Mudgee High School

Year 12 2010 HSC Assessment Task 4

Mathematics

imin 12402 2402 48

Time allowed : 70 minutes plus reading time. Instructions for candidates:

- Attempt all questions
- Answer questions on your own paper
- ◆ Start each question (number) on a <u>NEW SHEET OF PAPER</u>
- Show all working
- Write your name on every answer page and your question booklet
- Number questions clearly
- Hand in all of your work, in order, as one bundle

Question 1				
(a)	Change $\frac{\pi}{4}$ to degrees.	1		
(b)	Convert 225° to radians in terms of π .	1		
(c)	Find the exact area of the minor segment formed if an angle of $\frac{\pi}{4}$ is subtended at the centre of a circle of radius 10 cm	2		
(d)	Evaluate $\lim_{\theta \to 0} \frac{\sin \frac{\theta}{4}}{\theta}$	2		
(e)	Solve $\cos x = -\frac{\sqrt{3}}{2}$ for $0 \le x \le 2\pi$	2		
(f)	The area of the sector of a circle with radius 4 cm is $\frac{6\pi}{5}$ cm ² . Find the angle, in radians, that is subtended at the centre of the circle.	2		
(g)	The arc length when a sector of a circle is subtended by an angle of $\frac{\pi}{5}$ at the centre is $\frac{4\pi}{5}$ m. Find the radius of the circle.	2		
END OF QUESTION 1				

Question 2			Marks
(a)	Sketch (i)	$y = 3\cos x \text{ for } 0 \le x \le 2\pi$	2
	(ii) Clearly show	$y = 1 - \sin 4x$ for $0 \le x \le \pi$ ring amplitude and intercepts.	2

--- -

(b)	Differentiate (i)	$\tan 4x$	1
	(ii)	$2\cos^2 3x$	2

(c) Find (i)
$$\int 4\sin\frac{x}{2}dx$$
 1

(ii)
$$\int_0^{\frac{\pi}{16}} \sec^2 4x \, dx$$
 2

(d) Find the volume, correct to 2 decimal places, of the solid formed when the curve $y = \sec \pi x$ is rotated about the x-axis from x = 0 to x = 0.2 **2**

END OF QUESTION 2

Question 3		<u>Marks</u>
(a)	Evaluate $\log_5 \frac{1}{125}$	1
(b)	Solve $6^{x-4} = 10$, correct to 2 decimal places	2
(c)	Given $\log_6 4 = 0.77$ and $\log_6 5 = 0.90$, find: (i) $\log_6 20$	2
	(ii) log ₆ 16	2
	(iii) log ₆ 24	2

(d) Find the equation of the normal to the curve $y = e^{2x}$ at the point where x = 2, in exact form.

END OF QUESTION 3

3

Question 4

(a) Differentiate (i) e^{2x-6} (ii) $1 - \log_e 4x$ (iii) $\log_e(x^3 + x)$ (iii) $\frac{\log_e x}{e^x}$

(b) Evaluate in exact form
$$\int_0^2 (e^{2x} + 1) dx$$
 2

(c) Evaluate
$$\int_{1}^{5} \frac{x^2}{x^3+2} dx$$
 2

(d) Show that
$$\frac{x-8}{x^2-x-6} = \frac{2}{x+2} - \frac{1}{x-3}$$
.

Hence find $\int \frac{x-8}{x^2-x-6} dx$ in fully simplified form using log laws. 3

END OF QUESTION 4

<u>Marks</u>