Nudge High School

Year 122010 HSC

Assessment Task 4

Mathematics

Time allowed : 70 minutes plus reading time.
Instructions for candidates:

- Attempt all questions
- Answer questions on your own paper
- Start each question (number) on a NEW SHEET OF PAPER
- Show all working
- Write your name on every answer page and your question booklet
- Number questions clearly
- Hand in all of your work, in order, as one bundle

Question 1

Marks
(a) Change $\frac{\pi}{4}$ to degrees. 1
(b) Convert 225° to radians in terms of π. 1
(c) Find the exact area of the minor segment formed if an angle of $\frac{\pi}{4}$ is subtended at the centre of a circle of radius 10 cm
(d) Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin \frac{\theta}{4}}{\theta}$

2
(e) \quad Solve $\cos x=-\frac{\sqrt{3}}{2}$ for $0 \leq x \leq 2 \pi$
(f) The area of the sector of a circle with radius 4 cm is $\frac{6 \pi}{5} \mathrm{~cm}^{2}$. Find the angle, in radians, that is subtended at the centre of the circle.
(g) The arc length when a sector of a circle is subtended by an angle of $\frac{\pi}{5}$ at the centre is $\frac{4 \pi}{5} \mathrm{~m}$. Find the radius of the circle.

END OF QUESTION 1

Question 2
Marks
(a) \quad Sketch (i) $y=3 \cos x$ for $0 \leq x \leq 2 \pi$ 2
(ii) $y=1-\sin 4 x$ for $0 \leq x \leq \pi$ 2
Clearly showing amplitude and intercepts.
(b) Differentiate (i) $\tan 4 x \quad 1$
(ii) $2 \cos ^{2} 3 x \quad \mathbf{2}$
(c) Find (i) $\int 4 \sin \frac{x}{2} d x$
(ii) $\int_{0}^{\frac{\pi}{16}} \sec ^{2} 4 x d x$

2
(d) Find the volume, correct to 2 decimal places, of the solid formed when the curve $y=\sec \pi x$ is rotated about the x -axis from $x=0$ to $x=0.2$

END OF QUESTION 2

Question 3

(a) Evaluate $\log _{5} \frac{1}{125}$

Marks 1
(b) Solve $6^{x-4}=10$, correct to 2 decimal places 2
(c) Given $\log _{6} 4=0.77$ and $\log _{6} 5=0.90$, find:
(i) $\log _{6} 20$2
(ii) $\log _{6} 16 \quad 2$
(iii) $\log _{6} 24$2
(d) Find the equation of the normal to the curve $y=e^{2 x}$ at the point where $x=2$, in exact form.3
(a) Differentiate (i) $\quad e^{2 x-6}$ 1
(ii) $1-\log _{e} 4 x \quad 1$
(iii) $\log _{\mathrm{e}}\left(x^{3}+x\right) \quad 1$
(iii) $\frac{\log _{e} x}{e^{x}}$

2
(b) Evaluate in exact form $\int_{0}^{2}\left(e^{2 x}+1\right) d x$
(c) Evaluate $\int_{1}^{5} \frac{x^{2}}{x^{3}+2} d x$
(d) Show that $\frac{x-8}{x^{2}-x-6}=\frac{2}{x+2}-\frac{1}{x-3}$.

Hence find $\int \frac{x-8}{x^{2}-x-6} d x$ in fully simplified form using log laws.

