WR 2003

QUESTION 2 (12 MARKS) Use a SEPARATE Sheet of Paper

- (a) Solve $|2x+6| \le 10$
- (b) Give the exact value of $\log_2\left(\frac{1}{\sqrt{2}}\right)$
- (c) (i) Find $\frac{d}{dx}(2x^3 3x^2)$
 - (ii) Find the equation of the normal to $y = 2x^3 3x^2$ at the point where x = -1
- (d) Find the values of a and b such that :

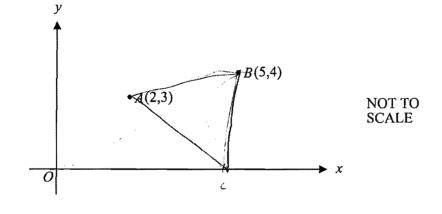
$$\begin{cases} 2a - 3b = 7\\ a - 4b = 1 \end{cases}$$
 and

(e) Christopher wheels his chair 100 metres up an inclined ramp, which takes him from ground level to a podium which is 5 metres above the ground. At what angle is the ramp inclined to the ground? (Answer to the nearest minute.)

$$5 \text{ m}$$
 θ

(f) Find the area (as an exact value) of a minor segment which subtends an angle of $\frac{\pi}{3}$ radians at the centre of a circle with 6 m radius.

Trialmath 2005 Question 2 (12 marks)

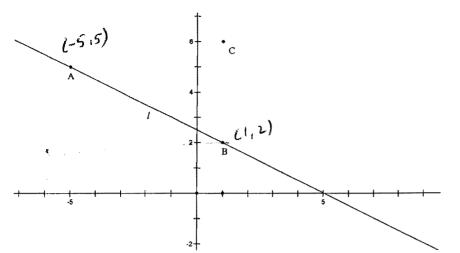

(a)

NOT TO SCALE 5 cm $\frac{\pi}{8}$ O

In the diagram, AB is an arc of a circle with centre O. The length of 2 the arc AB is 5cm and angle AOB is $\frac{\pi}{8}$ radians. Find the length of AO.

(b) Two fair dice are thrown simultaneously. One of the dice is red and the other is black. What is the probability that exactly one 3 is thrown? 2

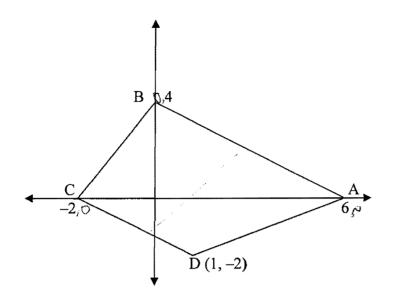
(c) The diagram shows the points A(2,3) and B(5,4).


(1)	Show that the equation of AB is $x - 3y + 7 = 0$.	2
(ii)	Find the coordinates of M , the midpoint of AB .	1
(iii)	Show that the equation of the perpendicular bisector of <i>AB</i> is $3x + y - 14 = 0$.	2
(iv)	The perpendicular bisector of AB cuts the x-axis at C. Find the coordinates of C.	1
(v)	Find the area of triangle BCO.	2

Marks

WR 2005 Question 2 (12 Marks)

Use a Separate Sheet of paper


The line l contains the points A (-5, 5) and B (1, 2).

C (1, 6) is another point which is not on the line *l*.

(a)	Calculate the distance AB.	2
(b)	Find the gradient of AB and hence, the acute angle the line AB makes with the x -axis.	2
(c)	Show that the equation of the line AB is $x + 2y - 5 = 0$.	2
(d)	Find the perpendicular distance of C from <i>l</i> .	2
(e)	Use your answers from a) and d) to show the area of $\triangle ABC = 12u^2$.	1
(f)	Show how you can calculate the area of $\triangle ABC$ in another way.	1
(g)	A fourth point D forms a parallelogram with A, B and C. Write all the possible positions of D.	2

.

ś

ABCD is a Trapezium as shown in the diagram above. The equation of the line passing through AB has equation 2x + 3y - 12 = 0. The coordinates of the point D are (1, -2).

(a)	What acute angle does the line AB make with the positive x-axis? Give your answer to the nearest degree.	2
(b)	Find the mid point (M) of the interval AB?	1
(c)	Show that the equation of the line CD is given by $2x + 3y + 4 = 0$.	2
(d)	Show the shortest distance from the point M to the line CD is equal to $\frac{16\sqrt{13}}{13}$ units.	2
(e)	Show that CD is parallel to AB.	1
(f)	Given that CD is 5 units, calculate the distance AB and hence find the area of the trapezium ABCD.	2
(g)	Give the equation of the circle, in the form $(x - a)^2 + (y - b)^2 = r^2$, with centre M having CD as tangent.	2

WR 2007

.

Question 2 (12 marks) Begin a SEPARATE sheet of paper

Marks

(a) Differentiate

(i)
$$\log_e(x^2 - 3x)$$
 1

(ii)
$$x^{\frac{1}{2}}$$
 1

(iii)
$$\frac{2x-1}{\cos x}$$
 2

(b) Integrate

 \sim

(i)
$$\int \cos\left(\frac{x}{2}\right) dx$$
 2

(ii)
$$\int_{0}^{1} \frac{1}{6} e^{3x} dx$$
 leave your answer in exact from 3

(c) Find y if
$$\frac{dy}{dx} = 2\cos 2x$$
 and $y = 3$ when $x = \frac{\pi}{4}$ 3

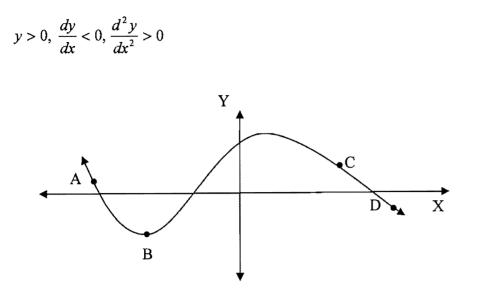
Trialmath 2008

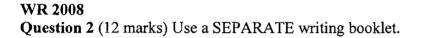
Question 2 (12 marks) Use a SEPARATE page/ booklet.

(a) Differentiate with respect to x:

(i)
$$\cos(2x^3+1)$$
 2

(ii)
$$e^{\frac{x}{3}}$$
 1


$$\overline{}$$


(b) Find
$$\int_0^{e^2-1} \frac{3}{x+1} dx$$
 3

(c)Consider the function
$$f(x) = \sqrt{25 - x^2}$$
2(i)Write down the domain of the function2(ii)Write down the range of the function1

(d) If
$$y = \ln\left[\frac{1-x}{1+x}\right]$$
 show that $\frac{dy}{dx} = \frac{-2}{1-x^2}$ 2

(e) State which point(s) on the following diagram relates to the following description.

a) Differentiate with respect to x

(i) $2x^3 + x^{-3}$ 2

(ii)
$$\frac{1}{e^{2x}} - \sin x$$
 2

b) (i) Find
$$\int \sec^2 x - e^{4x} dx$$
 2

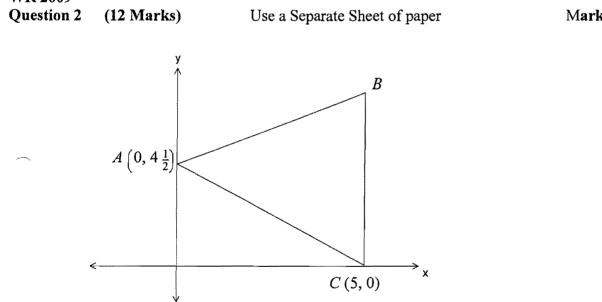
(ii) Evaluate
$$\int_{1}^{x} x^{2} + \frac{2}{x} dx$$
 3

c) Find the area enclosed by the curve $y = 2\cos 3x$, the line $x = \frac{\pi}{12}$ and the x and y axes. 3

Trialmath 2009

Question 2 (12 marks) Use a SEPARATE page/ booklet.

- (a) Given the points A(1,2), B(3,1), C(-1,4)
 - (i) Find the equation of the line BC.


1

Marks

Marks

1

	(ii) Find the perpendicular distance from point A to the line BC.	2
	(iii) Hence, or otherwise, find the area of $\triangle ABC$.	2
(b)	Find the sum of the first 15 terms of the series	
	$1 + 3 + 3^2 + 3^3 + 3^4 + \dots$	2
	Find the maximum area a triangle can have if the sum of its have and height is 10 are	3
(c)	Find the maximum area a triangle can have if the sum of its base and height is 10cm.	3
(d)	The area of a sector AOB of a circle centre 0, radius 4 cm is 28 cm ² . Find the length of the minor arc AB.	2
WR 2 Quest		

The lines AB and CB have equations x-2y+9=0 and 4x-y-20=0 respectively.

- (h) Find the coordinates of the point B.
- (i) Show that the equation of the line AC is 9x + 10y 45 = 0. 2

2

(j)	Calculate the distance AC in exact form.	2
(k)	Find the equation of the line perpendicular to BC which passes passes through A .	2
(1)	Calculate the shortest distance between the point B and the line AC . Hence find the area of the triangle ABC .	2
(m)	State the inequalities that together define the area bounded by the triangle ABC .	2

<u>,</u>