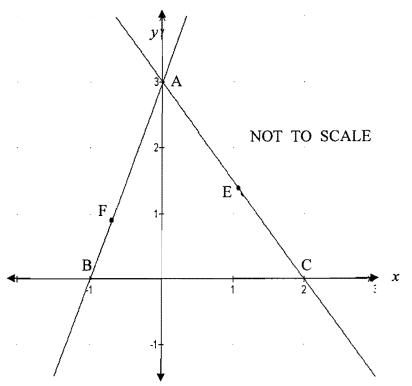
Jamie

The points A (0,3), B (-1,0) and C (2,0) are the vertices of a triangle.

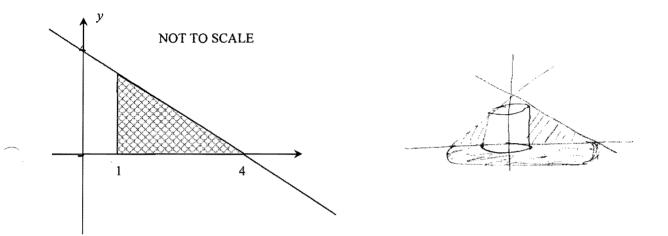


- (a) Find the gradient of the line AC.
- (b) Show that the equation of AC is 3x + 2y 6 = 0
- (c) BE is the altitude from B to AC. Show that BE has equation 2x - 3y + 2 = 0. (BE is perpendicular to AC)
- (d) Calculate the length of the line segment BE.
- (e) Given that the altitude CF has equation x + 3y 2 = 0, show that CF and BE intersect on the y axis.
- (f) Find the midpoint of AC.
- (g) Show that the altitude from B does not pass through the midpoint of AC.

WR 2005Use a Separate Sheet of paperMarks

(a) Differentiate the following with respect to x.

(i)
$$\sqrt[4]{x^3}$$
 2
(ii) $\sin x \ln x$ 2
(iii) $\frac{\sin x}{e^x}$ 2



y = 4 - x is shown on the graph.
Calculate the volume of the solid formed when the area bounded by the function, x axis and x = 1 is rotated around the y axis.

(c)
$$g'(x) = 3x^2 - 4 + \frac{1}{x^2}$$

g(x) takes the value 4 when $x = 1$. Find g(x).

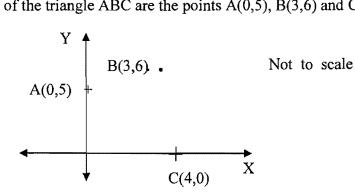
(b)

3

3

. [] $\int (4 - 2i)^2 -$

(a) The vertices of the triangle ABC are the points A(0,5), B(3,6) and C(4,0)



(i) Find the gradient of the side AB

(b)

1

(ii)	Find the equation of the line AB, giving your answer in the general equation form $ax+by+c = 0$.	2
(iii)	A line through C, parallel to AB, cuts the y axis at M. Find the coordinates of M.	2
(iv)	Find the distance AM	1
(v)	Find the area of triangle AMC	1
Solve	for x: $2^{2x} - 2(2^x) - 8 = 0$	3

(c) If $\int_{0}^{a} (3-4x) = 1$ find the value(s) of a? 2

Question 3 continued

b) Michael is training for a local marathon. He has trained by completing practice runs over the marathon course. So far he has completed three practice runs with times shown below.

Week 1	Week 2	Week 3	
3 hours	2 hours 51 minutes	2 hours 42 minutes 27 seconds	
Show the $r = 0.95$		geometric series with a common ratio	1
	If this series continues, what would be his expected time in Week 5, to the nearest second?		
	How many hours, minutes and seconds (to the nearest second) will he have run in total in his practice runs in these 5 weeks?		
6 minutes	s, how many weeks n	or the marathon was 2 hours and hust he keep practicing to be able to run revious winning time?	2

TRIALMATH 2009 Question 3 (12 marks) Use a SEPARATE page/ booklet.

Marks

- (a) Differentiate with respect to x:
 - (i) $y = x^2 \ln x$ 2
 - (ii) $y = \sin^2 2x$ 2
- (b) Find:
 - (i) $\int \cos 2x \, dx$ (ii) $\int_{0}^{1} \frac{3}{x+1} dx$ 2

Marks

(c) If
$$\frac{dy}{dx} = 6x - 1$$
 and the function passes through (1, 2.5), find y as a function of x.

(d) Use the trapezoidal rule with four function values, to find an approximate value of the area under the curve $y = 3^x$, bounded by the x axis and x = 1 and x = 4

WR 2009			
Question 3	(12 Marks)	Use a Separate Sheet of paper	Marks

- (a) Differentiate with respect to x.
 - i. $3x\sqrt[3]{x}$ 2

ii.
$$\frac{\sin 2x}{e^{2x}}$$
 2

(b) Find:

i.
$$\int \frac{dx}{e^{3x}}$$
 2

ii.
$$\int_0^{\pi} \sec^2 \frac{x}{4} \, dx$$
. 2

(c) If α and β are the roots of the equation $3x^2 - 4x - 7 = 0$ Find:

i. $\alpha + \beta$. 1

ii.
$$2\alpha^2 + 2\beta^2$$
. 1

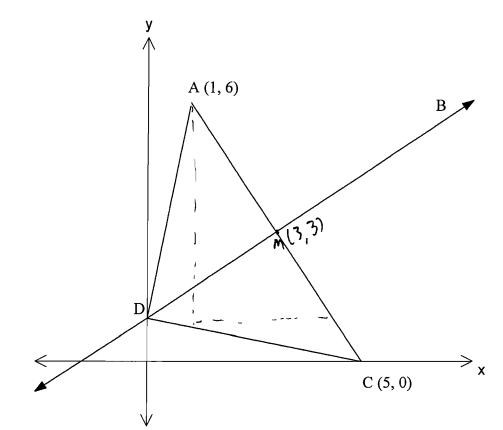
the equation with roots $2\alpha^2$ and $2\beta^2$. **2**

2

WR 2008 Question 3 (12 marks) Use a SEPARATE writing booklet.

Marks

a)

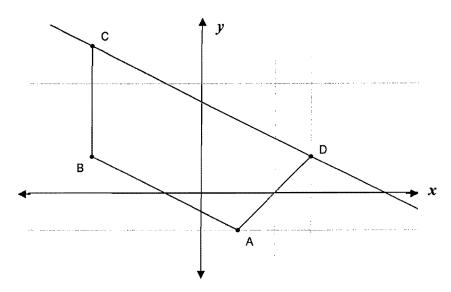


The points A and C have coordinates (1, 6) and (5, 0) respectively. The line BD has an equation of 2x-3y+3=0 and meets the y axis in D.

i)	The point M is the midpoint of AC. Show that M has coordinates (3, 3).	1
ii)	Show that M lies on BD.	1
iii)	Find the gradient of the line AC.	1
iv)	Show that BD is perpendicular to AC.	2
v)	Find the distance AC.	1
vi)	Explain why the quadrilateral ABCD is a kite regardless of the position of B.	1

Question 3 continues on page 5

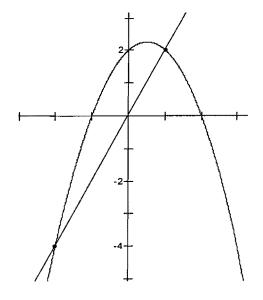
(a) A (1, -1) B (-3, 1) C (-3, 4) and D (3, 1) are points on the Cartesian Plane. AB||CD



(i)	Find the distances AB and DC	2
(ii)	Show that the equation of CD is $x + 2y - 5 = 0$	2
(iii)	Find the perpendicular distance of A from CD	2
(iv)	Hence or otherwise obtain the area of the trapezium ABCD	1

(b) Find the equation of the tangent to the curve $y = \sin 3x$ at the point where $x = \frac{\pi}{3}$

The graphs of y = 2x and $y = -x^2 + x - 2$ are shown. Solve $0 > x^2 + x + 2$



3

2

Trialmath 2005 Question 3 (12 marks)

Marks

2

2

(a) Differentiate

(i)
$$\left(e^{2x+1}\right)\sin x$$

(ii)
$$\frac{\tan 3x}{3x+2}$$
 2

(b) Find

(c)

(i)
$$\int \frac{3}{\sqrt{e^x}} dx$$

(ii)
$$\int \frac{\cos 2x}{\sin 2x} dx$$
 2

NOT TO SCALE 5 cm 4 cmA 7 cm C

In the above diagram, ABC is a triangle in which AB = 5 cm, BC = 4 cm, AC = 7 cm and AB is produced to D such that AD = AC.

- (i) Find the size of the smallest angle in $\triangle ABC$. Express your **2** answer to the nearest degree.
- (ii) Hence, find *CD*. Express your answer to 2 decimal places. 2