(a) In the figure below, $\mathrm{FL} \| \mathrm{GM}$ and $\mathrm{FG}=\mathrm{FK}$.

$\begin{array}{lc}\text { (i) Prove that } \angle \mathrm{FKG}=56^{\circ} & 2 \\ \text { (ii) } & \text { Hence or otherwise prove that } \mathrm{FL} \text { bisects } \angle \mathrm{EFK} \text {. }\end{array}$
(b) Find:
(i) $\int \frac{3 x^{4}-2 x}{x^{2}} d x$
(ii) $\int_{0}^{\frac{\pi}{2}} 2 \sin (3 x) \cdot d x$
(c) In the diagram below, $\angle S P T=\angle T R Q=90^{\circ}$ and $P T=T R$.

(i) Prove that $\triangle S P T \equiv \triangle T R Q$
(ii) Prove that T bisects $Q S$.
(a) The probability that a man lives to the age of 75 is $\frac{3}{5}$ and the probability that his wife will live to the age of 75 years is $\frac{2}{3}$. By drawing a tree diagram or otherwise, find the probability that
i. both will live to the age of 75
ii. Only the man will live to the age of 75
iii. Only the wife will live to the age of 75 1
iv. At least one of them will live to the age of 75.
(b) If α and β are the two roots of $x^{2}-4 x+2=0$, find the value of:
i. $\alpha+\beta$ 1
ii. $\alpha \beta$ 1
iii. $\alpha^{2} \beta+\alpha \beta^{2} \quad 2$
iv. $\alpha^{2}+\beta^{2} \quad 2$
(a) Consider the function defined by $f(x)=2 x^{3}-3 x^{2}-36 x+26$.
(i) Find the coordinates of the stationary points of the curve
$y=f(x)$ and determine their nature.
(ii) Find the coordinates of any point of inflexion. $\mathbf{1}$
(iii) Sketch the graph of $f(x)=2 x^{3}-3 x^{2}-36 x+26$ by showing 2 the above information.
(iv) For what values of x is the curve concave down and
decreasing?
(b) For the parabola $4 x=8 y-y^{2}$.
(i) Find the coordinates of the vertex. 2
(ii) Find the coordinates of the focus. 1
(iii) Sketch the curve clearly labelling the vertex and focus. $\mathbf{1}$

(a) The figure ABCD has $\mathrm{AB} \| \mathrm{CD}$. It also has the feature that DA intersects BC at M .
(i) Prove $\triangle \mathrm{AMB}|\mid \triangle \mathrm{DMC}$. 3
(ii) If $\mathrm{AB}: \mathrm{CD}=2: 5$ and area $\triangle \mathrm{AMB}=10 \mathrm{u}^{2}$, find the $\quad 1$ total area of the figure.
(b) (i) Find $\int \cos (4 x) d x \quad 1$
(ii) Evaluate $\int_{1}^{e^{4}} \frac{x}{x^{2}+4} d x$
$2 \int$
(c) On the Cartesian Plane, sketch the region satisfying the inequalities

$$
x \geq 2 \quad y \geq 4 \quad \text { and } \quad y \leq 8-x
$$

(d) A hat contains 3 white marbles, 4 black marbles, 9 red marbles
and 4 green marbles. 2 marbles are drawn out without replacement.
What is the probability that they are both red?
(a) The equation of a parabola is given by $x^{2}-4 x-2 y+8=0$

Find the	i.	Vertex	$\mathbf{2}$
	ii.	Focus	$\mathbf{2}$
	iii.	Equation of the normal to the parabola at the point $(0,4)$.	$\mathbf{2}$

(b) A woman walks 120 metres on a bearing of 312°, then turns and walks for a further 96 metres on a bearing of 056°.
i. How far is the woman from her starting point to the nearest kilometre?
ii. Hence find the bearing of the woman from her starting point?
(c) Use the table

x	3	3.25	3.5	3.75	4	4.25	4.5
$f x$	1.0	0.8	0.65	0.55	0.5	0.48	0.45

to find an approximation to the value of the definite integral

$$
\int_{3}^{4 \cdot 5} f(x) d x
$$

using Simpson's Rule. Give your answer correct to 3 significant figures.

Question 5 (12 marks) Begin a SEPARATE sheet of paper
(a) Show that $\frac{\sec \theta-\sec \theta \cos ^{4} \theta}{1+\cos ^{2} \theta}=\sin \theta \tan \theta \quad 3$
(b) (i) Find the value(s) of k for which $x^{2}+(2-k) x+2.25=0$ has equal roots
(ii) Find the value(s) of k for which $y=k x+1$ is tangent to $y=x^{2}+2 x+3 \cdot 25$
(c) A 15 cm arc on the circumference subtends an angle of $\frac{\pi^{c}}{5}$ at the centre of a circle. 3 Find the radius of the circle and the area of the sector.
(d) Boat A sails 15 km from port P on a bearing of 055^{0}

Boat B sails from P for 25 km on a bearing of 135°
(i) Show the angle $\mathrm{APB}=80^{\circ} \quad{ }^{\circ} \mathrm{P}$
(ii) Calculate their distance apart to 1 dec pl . 2

Question 5 (12 marks) Use a SEPARATE page/ booklet.
(a)

AB is a median in the triangle DEA i.e. $\mathrm{BD}=\mathrm{BE}$. Also $\mathrm{FE}=\mathrm{DG}$ and FE is parallel to DG .
Copy the diagram into your answer booklet and prove, giving full reasons why $\mathrm{FB}=\mathrm{BG}$
(b) There is one red and three green jellybeans in a jar. One jellybean is selected at random, eaten, and then a second jellybean is selected at random and is also eaten.
Find the probability:
(i) The two jellybeans eaten are both green.
(ii) The red jellybean is the second one eaten.
(c) The circle shown has centre O , radius 4 cm and $\angle A O B=120^{\circ}$. Show that the exact area of the major segment $C A B$ is

3
(d) (i) Sketch a neat graph of $y=e^{2 x}+1$
(ii) Find the area bounded by $y=e^{2 x}+1$, the coordinate axes and the line $x=1$
a) In the diagram below $\mathrm{AE}=\mathrm{ED}=\mathrm{AD}=\mathrm{DC}, \angle A D C=90^{\circ}$ and $\mathrm{AE} \| \mathrm{BC}$.

i) Find the size of $\angle E A B$. Give reasons for your answer.
ii) Find the size of $\angle A B C$. Give reasons for your answer.
b) A particle moves in a straight line so that its displacement, in metres, is given by $x=\frac{4 t^{2}+t+8}{4 t+1}$ where t is measured in seconds.
i) Find the initial position of the particle. 1
ii) Find an expression for the velocity of the particle.

1
iii) Show that the particle is stationary when $t=\frac{-1+4 \sqrt{2}}{4}$ seconds.
iv) Describe the motion of the particle in the first two seconds.
c) Solve the pair of simultaneous equations

$$
\begin{aligned}
& 3 x-y=10 \\
& x=y+2
\end{aligned}
$$

Question 5 (12 marks) Use a SEPARATE page/ booklet.
(a)

The equal sides QP and RP of the isosceles triangle QPR are produced to S and T respectively, such that $\mathrm{PS}=\mathrm{PT}$.
$\angle P Q R=70^{\circ}, \angle P S R=30^{\circ}$ and $\angle P R S=x^{\circ}$
(i) Find the size of x.
(ii) Prove there is another angle equal to x^{0}.
(b) (i) If $y=e^{2 x^{3}}$, find $\frac{d y}{d x}$
(ii) Hence, or otherwise, evaluate $\int_{0}^{1} x^{2} e^{2 x^{3}} d x$
(c) Find the equations of the tangents to the parabola $y=x^{2}-2 x-3$ at the points where the line $y=5$ cuts the parabola.
(d) Is the following series an arithmetic or geometric progression? Justify your answer.

$$
\ln (x)+\ln \left(x^{2}\right)+\ln \left(x^{3}\right)+\ln \left(x^{4}\right)+\ldots \ldots \ldots
$$

(a) In a raffle in which 1000 tickets are sold, there is a first prize of $\$ 1000$, a second prize of $\$ 500$ and a third prize of $\$ 200$. The prize winning tickets are drawn consecutively without replacement, with the first ticket winning first prize.

Find the probability that:
i. a person buying one ticket in the raffle wins:
α. first prize.
β. at least $\$ 500$
γ. no prizes.
ii. a person buying two tickets in the raffle wins:
α. at least $\$ 500$
(b)

$A B C D$ is a parallelogram, $B P=D Q$.

Prove DP = BQ
(c) i. Is the series $\log 3+\log 9+\log 27+\ldots \ldots .$. arithmetic or geometric?

Give reasons for your answer.
iii. Find the sum of the first 10 terms of the series.
(d) Find the radius and centre of the circle with equation

$$
4 x^{2}-4 x+4 y^{2}+24 y+21=0
$$

