WR 2003

2

1

(a) In the figure below, $FL \parallel GM$ and FG = FK.

(i) Prove that
$$\angle FKG = 56^{\circ}$$

(ii) Hence or otherwise prove that FL bisects
$$\angle$$
 EFK. 2

(b) Find :

(i)
$$\int \frac{3x^4 - 2x}{x^2} dx$$
 2

(ii)
$$\int_0^{\overline{2}} 2\sin(3x) dx$$
 2

(c) In the diagram below, $\angle SPT = \angle TRQ = 90^{\circ}$ and PT = TR.

(i) Prove that
$$\triangle SPT \equiv \triangle TRQ$$
 3

(ii) Prove that T bisects QS.

WR 2004 Question 5 (12 Marks)

(a) The probability that a man lives to the age of 75 is $\frac{3}{5}$ and the probability that his wife will live to the age of 75 years is $\frac{2}{3}$. By drawing a tree diagram or otherwise, find the probability that

i.	both will live to the age of 75	2
ii.	Only the man will live to the age of 75	1
iii.	Only the wife will live to the age of 75	1
iv.	At least one of them will live to the age of 75.	2

(b) If α and β are the two roots of $x^2 - 4x + 2 = 0$, find the value of:

i.	$\alpha + \beta$	1
ii.	αβ	1
iii.	$\alpha^2\beta + \alpha\beta^2$	2
iv.	$\alpha^2 + \beta^2$	2

Trialmath 2005 Question 5 (12 marks)

Marks

(a)	Consider the function defined by $f(x) = 2x^3 - 3x^2 - 36x + 26$.						
	(i)	Find the coordinates of the stationary points of the curve $y = f(x)$ and determine their nature.	3				
	(ii)	Find the coordinates of any point of inflexion.	1				
	(iii)	Sketch the graph of $f(x) = 2x^3 - 3x^2 - 36x + 26$ by showing the above information.	2				
	(iv)	For what values of x is the curve concave down and decreasing?	2				
(b)	For the parabola $4x = 8y - y^2$.						
	(i)	Find the coordinates of the vertex.	2				

(ii) Find the coordinates of the focus. 1

(iii) Sketch the curve clearly labelling the vertex and focus. 1

Marks

2

-

- (a) The figure ABCD has AB || CD. It also has the feature that DA intersects BC at M.
 - (i)Prove $\triangle AMB \parallel \mid \triangle DMC.$ 3(ii)If AB:CD = 2:5 and area $\triangle AMB = 10u^2$, find the1

total area of the figure.

(b) (i) Find
$$\int \cos(4x) dx$$
 1

(ii) Evaluate
$$\int_{1}^{e^4} \frac{x}{x^2 + 4} dx$$

- (c) On the Cartesian Plane, sketch the region satisfying the inequalities 3 $x \ge 2$ $y \ge 4$ and $y \le 8-x$
- (d) A hat contains 3 white marbles, 4 black marbles, 9 red marbles
 and 4 green marbles. 2 marbles are drawn out without replacement.
 What is the probability that they are both red?

WR Ques		Marks)		Use	a Sepa	rate Sł	neet of	paper			Marks
(a)	The equatio	n of a pai	rabola i	s give	n by x^2	- 4 <i>x</i> -	-2y+8	3 = 0			
	Find the	i.	Verte	x							2
		ii.	Focus								2
		iii.	Equat point		the no	rmal to	o the pa	arabola	a at the		2
(b)	A woman w for a further				0		2°, then	turns	and wa	alks	
		far is the netre?	e woma	n fron	n her st	arting	point t	o the r	nearest		2
	ii. Heno	ce find th	e bearir	ng of t	he won	nan fro	om her	startin	ig poin	t?	2
	Use the table	e	x	3	3.25	3.5	3.75	4	4.25	4.5	2
-					1			+ <u>·</u>			

to find an approximation to the value of the definite integral

1.0

fx

$$\int_{3}^{4\cdot 5} f(x)dx,$$

using Simpson's Rule. Give your answer correct to 3 significant figures.

0.8

0.65 0.55

0.5

0.48 0.45

WR 2007 Question 5 (12 marks) Begin a SEPARATE sheet of paper

(a) Show that
$$\frac{\sec\theta - \sec\theta\cos^4\theta}{1 + \cos^2\theta} = \sin\theta\tan\theta$$
 3

(b)	(i)	Find the value(s) of k for which $x^2 + (2 - k)x + 2.25 = 0$ has equal roots	2
	(ii)	Find the value(s) of k for which $y = kx + 1$ is tangent to $y = x^2 + 2x + 3 \cdot 25$	1
(c)		cm arc on the circumference subtends an angle of $\frac{\pi^c}{5}$ at the centre of a circle. the radius of the circle and the area of the sector.	3
(d)		A sails 15km from port P on a bearing of 055^0 B sails from P for 25 km on a bearing of 135^0 A	
	(i)	Show the angle $APB = 80^{\circ}$	1
	(ii)	Calculate their distance apart to 1 dec pl.	2

•в

Marks

AB is a median in the triangle DEA i.e. BD=BE. Also FE=DG and FE is parallel to DG.

Copy the diagram into your answer booklet and prove, giving full reasons why FB = BG

3

(b) There is one red and three green jellybeans in a jar. One jellybean is selected at random, eaten, and then a second jellybean is selected at random and is also eaten. Find the probability:

(i)	The two jellybeans eaten are both green.		
(ii)	The red jellybean is the second one eaten.	1	

(c) The circle shown has centre O, radius 4 cm and $\angle AOB = 120^{\circ}$. Show that the exact area of the major segment CAB is

(d)

(i) Sketch a neat graph of $y = e^{2x} + 1$

1

(ii) Find the area bounded by $y = e^{2x} + 1$, the coordinate axes and the line x = 1 2

In the diagram below AE = ED = AD = DC, $\angle ADC = 90^{\circ}$ and $AE \parallel BC$. a) $\angle BAC = 51^{\circ}$ ہلارہ -∠B 24 % 51° 3 N) E \mathscr{D} 105 Ð sto-D С i) Find the size of $\angle EAB$. Give reasons for your answer. 3 ii) Find the size of $\angle ABC$. Give reasons for your answer. 1 A particle moves in a straight line so that its displacement, in metres, is given by b) $x = \frac{4t^2 + t + 8}{4t + 1}$ where t is measured in seconds. Find the initial position of the particle. i) 1 ii) Find an expression for the velocity of the particle. 1 Show that the particle is stationary when $t = \frac{-1 + 4\sqrt{2}}{4}$ seconds. 2 iii) Describe the motion of the particle in the first two seconds. iv) 2 Solve the pair of simultaneous equations **c**) 2 3x - y = 10x = y + 2

Marks

3

1

The equal sides QP and RP of the isosceles triangle QPR are produced to S and T respectively, such that PS=PT.

$$\angle PQR = 70^{\circ}$$
, $\angle PSR = 30^{\circ}$ and $\angle PRS = x^{\circ}$

- (i) Find the size of x. 2
- (ii) Prove there is another angle equal to x^0 . 2

(b) (i) If
$$y = e^{2x^3}$$
, find $\frac{dy}{dx}$ 2

(ii) Hence, or otherwise, evaluate
$$\int_{0}^{1} x^2 e^{2x^3} dx$$
 2

- (c) Find the equations of the tangents to the parabola $y = x^2 2x 3$ at the points where the line y = 5 cuts the parabola.
- (d) Is the following series an arithmetic or geometric progression? Justify your answer. $ln(x) + ln(x^2) + ln(x^3) + ln(x^4) + \dots$

Ques	tion 5	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	\$1000 winni), a second prize of	tickets are sold, there is a first prize of \$500 and a third prize of \$200. The prize n consecutively without replacement, with prize.	the
	Find	the probability that:	:	
	i.	a person buying	one ticket in the raffle wins:	
		a. first prize		1
		β. at least \$5	500	1
		γ. no prizes.		1
	ii.	a person buying t	two tickets in the raffle wins:	
		α. at least \$5	500	1
(b)		A P	В	3
D		Q	ABCD is a parallelogram Prove DP = BQ	m, BP = DQ.
(c)	i.		$+ \log 9 + \log 27 + \dots$ arithmetic or geometry	etric? 2
	iii.	Find the sum of th	he first 10 terms of the series.	1
(d)	Find t	he radius and centre	e of the circle with equation	2
		4 r	$x^2 - 4x + 4y^2 + 24y + 21 = 0$	

.

Â.