WR 2003

Question 7 (12 marks) Use a SEPARATE Sheet of Paper
Marks
(a) The population of a species of bacteria grows such that the population P (bacteria) at a time t (minutes) is given by : $P=2000 e^{k t}$
(i) Show that the rate of increase of the population is proportional to the size of the population at that time.
(ii) Given that the initial population doubles after 4 minutes calculate the value of k, correct to 3 significant figures.
(iii) Find the population after 6 minutes. (correct to the nearest whole number)
(b) On separate diagrams, draw the graphs of the following:

1 2
2
(i) $x^{2}+y^{2} \leq 4$
(i) $\begin{array}{ll}x^{2}+y^{2} \leq 4 & 2\end{array}$
(ii) $y \geq 1-\cos 2 x$. for $-\pi \leq x \leq \pi$.
(iii) The intersection of the two inequalities above.
(c) Find the values of P, Q and R if $3 x^{2}+5 x-1 \equiv P(x+1)^{2}+Q(x+1)+R$

WR 2004
Question 7 ($\mathbf{1 2}$ Marks) Use a Separate Sheet of paper Marks
(a) A married couple borrow $\$ 250000$ from a bank to be repaid in equal monthly installments of $\$ \mathrm{M}$ at the end of every month. Interest at the rate of 6.24% p.a. is charged on the amount owing for that month.

If A_{n} is the amount owing at the end of the nth month:
i. Write down an expression for A_{1}. 1
ii. Show that $\mathrm{A}_{3}=250000(1.0052)^{3}-\mathrm{M}\left(1.0052^{2}+1.0052+1\right) \quad 2$
i. Calculate the value of each monthly installment (\$M) if 3 the loan is to be repaid in 25 years.
(b) The diagram below shows the beginning of an infinite set of squares.

The outer square has a side of length 9 cm and each successive square has a side of length $\frac{2}{3}$ of that of the previous square.
Find the sum of the perimeters of all the squares.

c) Use Simpson's Rule with five function values to find the approximate value of $\int_{1}^{5}\left(x^{2}+1\right) d x$ to three decimal places.

WR 2005
Question $7 \quad$ (12 Marks) Use a Separate Sheet of paper

Marks
(a) A population of bacteria in a medium are growing at a rate proportional to the current population. The population obeys the model $P=P_{0} e^{k t}$, where P_{0} is the population of bacteria at noon on 1 August and t is measured in hours. When $t=6$ the population has grown from 900000 to 1.4 million.
(i) Show that $\frac{d P}{d t}=k P$
(ii) What is the value of k ?
(iii) What will the population be when $t=10$? 1
(iv) When will the population reach 3 million?
(b) Write the functions represented by the following graphs
(i)

1

Marks

1
(c) $\operatorname{ABCDE} \ldots \ldots$ is a regular polygon with n sides inscribed within a unit circle with centre O.

(i) Explain why $A \hat{O} B=\frac{2 \pi}{n}$
(ii) Write an expression for the area of the polygon

ABCDE... in terms of n.
1
(iii) Show $\lim _{n \rightarrow \infty}\left(\frac{n}{2} \sin \left(\frac{2 \pi}{n}\right)\right)=\pi$

WR 2006
Question 7 (12 Marks)
(a) For the curve $y=x^{3}-3 x^{2}-9 x+4$, Find:
i. the stationary points and determine their nature.
ii. the point of inflection.
iii. Sketch the curve for the domain $-2 \leq x \leq 4$.
(b) The graph of a function has the following properties:

- Passes through the origin and has minimum turning point at $(4,0)$
- \quad Concave up for $x>3$ and $x<0$
- Increasing for $-2<x<2$ and $x>4$.

Sketch a possible graph of the function.
(c) For what values of k does the equation $x^{2}+(k+2) x+(k+2)=0$ have equal roots.
(d) The limiting sum of a series $3+x+x^{2}+\ldots \ldots \ldots$ is 18 . 2 If $|x|<1$, find the value of x.

WR 2007
Question 7 (12 marks) Begin a SEPARATE sheet of paper
(a) Let A be the point $(-2,0)$ and B be the point $(6,0)$.

At $\mathrm{P}(x, y), \mathrm{PA}$ meets PB at right angles.
(i) Show that the gradient of PA is $m_{1}=\frac{y}{x+2}$
(ii) Find an equation for the locus of P
(b) The velocity of an object is given by the equation $v=6 t-8-t^{2}$ Where time (t) is in seconds and velocity (v) in metres/second It begins its motion at $x=5$ metres.
(i) Find an equation for the displacement of the object 2
(ii) At what 2 times is the object stationary? 1
(iii) Find the distance travelled by the object between $t=3$ and $t=5 \quad 2$
(iv) What is the maximum velocity of the object? 1
(c) Two dice are biased so that, the probability of a six is $\frac{3}{8}$ and of each other number is $\frac{1}{8}$. Find the probability of
(i) Rolling a double six $\quad 1$
(ii) Rolling the two dice so that neither is a six $\quad 1$
(iii) Only 1 six appears when the two dice are rolled $\mathbf{1}$

WR 2008
Question 7 (12 marks) Use a SEPARATE writing booklet.
a) For the parabola with equation $x^{2}=-8 y$.
i) Find the coordinates of the focus (S) of the parabola. 1
ii) Find the equation of the directrix of the parabola. 1
iii) Show that the point $\mathrm{A}(-8,-8)$ lies on the parabola. 1
iv) Find the equation of the focal chord of the parabola which
passes through A.
v) Find the equation of the tangent to the parabola at A. 2
b) i) $\quad \begin{aligned} & \text { Show that the curves } y=x^{2}-3 x \text { and } y=5 x-x^{2} \text { intersect at the } \\ & \text { points }(0,0) \text { and }(4,4) .\end{aligned} \quad \mathbf{2}$
ii) Find the area enclosed between the two curves. 3

WR 2009
Question 7 (12 Marks)
(a) The parabola $y=x^{2}$ and the line $y=x+2$ intersect at points A and B respectively. Find the coordinates of the points A and B. Hence find the area bounded by the parabola and the line.
(b) The minute hand on a clock face is 12 centimetres long. In 40 minutes
i. Through what angle does the hand move (in radians)?

1
ii. How far does the tip of the hand move? 1
iii. What area does the hand sweep through in this time?

1
(c) Use Simpson's rule to evaluate $\int_{1}^{2.5} f(x) d x$, to 1 decimal place 2 using the 7 function values in the table below.

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
$f(x)$	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(d) A function is defined by the following features:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}>0 \text { for } x<-1 \text { and } 1<x<3 . \\
& \frac{d y}{d x}=0 \text { when } x=-3,1 \text { and } 5 . \\
& y=0 \text { when } x=1 .
\end{aligned}
$$

Sketch a possible graph of the function.

