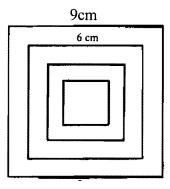
-

QUESTION 7 (12 MARKS) Use a SEPARATE Sheet of Paper

Marks


(a)	The population of a species of bacteria grows such that the population P (bacteria) at a time t (minutes) is given by : $P = 2000e^{kt}$					
	(i)	Show that the rate of the population	e of increase of the population is proportion at that time.	al to the size	1	
	(ii)		tial population doubles after 4 minutes calcu ct to 3 significant figures.	late the	2	
	(iii)	Find the population number)	on after 6 minutes. (correct to the nearest wh	nole	1	
(b)	On separate diagrams, draw the graphs of the following:					
	$(i) \qquad x^2 + y^2 \le 4$					
	(ii)	(ii) $y \ge 1 - \cos 2x$. for $-\pi \le x \le \pi$.				
	(iii)	The intersection o	f the two inequalities above.		2	
(c)	Find t	the values of P , Q as	nd R if $3x^2 + 5x - 1 \equiv P(x+1)^2 + Q(x+1)$	+ <i>R</i>	3	
WR 2 Quest	2004 tion 7	(12 Marks)	Use a Separate Sheet of paper	Marks		
(a)	month	nly installments of \$	\$250 000 from a bank to be repaid in equal M at the end of every month. Interest at the on the amount owing for that month.			
	If A _n i	is the amount owing	g at the end of the nth month:			
		i. Write down	n an expression for A_1 .	1		
		ii. Show that	$A_3 = 250\ 000(1.0052)^3 - M(1.0052^2 + 1.005)^3$	52 + 1) 2		

i. Calculate the value of each monthly installment (\$M) if 3 the loan is to be repaid in 25 years.

(b) The diagram below shows the beginning of an infinite set of squares. The outer square has a side of length 9 cm and each successive square

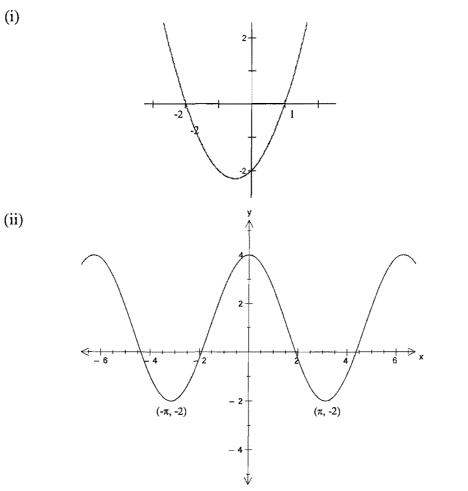
has a side of length $\frac{2}{3}$ of that of the previous square.

Find the sum of the perimeters of all the squares.

c) Use Simpson's Rule with five function values to find the approximate 3 value of $\int_{1}^{5} (x^2 + 1) dx$ to three decimal places.

WR 2005Use a Separate Sheet of paperMarks

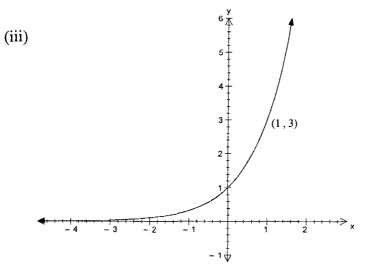
(a) A population of bacteria in a medium are growing at a rate proportional to the current population. The population obeys the model $P = P_0 e^{kt}$, where P_0 is the population of bacteria at noon on 1 August and t is measured in hours. When t = 6 the population has grown from 900 000 to 1.4 million.


(i)Show that
$$\frac{dt}{dt} = kP$$
1(ii)What is the value of k?2(iii)What will the population be when $t = 10$?1(iv)When will the normalities much 2 william?1

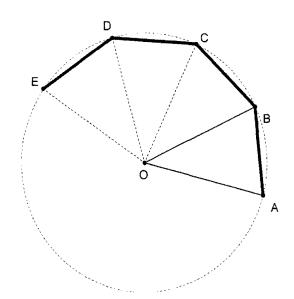
3

 \sim

 \sim



2


1

Marks

(c) ABCDE..... is a regular polygon with *n* sides inscribed within a unit circle with centre O.

(i) Explain why
$$A\hat{O}B = \frac{2\pi}{n}$$
 1
(ii) Write an expression for the area of the polygon
ABCDE... in terms of *n*. 1
(iii) Show $\frac{\lim_{n \to \infty} \left(\frac{n}{2} \sin\left(\frac{2\pi}{n}\right)\right) = \pi}{1}$

WR 2006 Marks (12 Marks) Use a Separate Sheet of paper **Question 7** For the curve $y = x^3 - 3x^2 - 9x + 4$, Find: (a) 3 i. the stationary points and determine their nature. ii. 1 the point of inflection. iii. Sketch the curve for the domain $-2 \le x \le 4$. 2 (b) The graph of a function has the following properties: Passes through the origin and has minimum turning point at . (4,0)Concave up for x > 3 and x < 0• Increasing for -2 < x < 2 and x > 4. 2 Sketch a possible graph of the function. For what values of k does the equation $x^2 + (k+2)x + (k+2) = 0$ 2 (c) have equal roots. The limiting sum of a series $3 + x + x^2 + \dots$ is 18. (d) 2 If |x| < 1, find the value of x. WR 2007

Question 7 (12 marks) Begin a SEPARATE sheet of paper

(a) Let A be the point (-2, 0) and B be the point (6, 0).At P (x, y), PA meets PB at right angles.

- (i) Show that the gradient of PA is $m_1 = \frac{y}{x+2}$ 1
- (ii) Find an equation for the locus of P 2

(b)	The velocity of an object is given by the equation $v = 6t - 8 - t^2$						
	Where time (t) is in seconds and velocity (v) in metres/second						
	It beg	gins its motion at $x = 5$ metres.					
	(i)	Find an equation for the displacement of the object	2				
	(ii)	At what 2 times is the object stationary?	1				
	(iii)	Find the distance travelled by the object between $t = 3$ and $t = 5$	2				
	(iv)	What is the maximum velocity of the object?	1				
(c)	Two dice are biased so that, the probability of a six is $\frac{3}{8}$ and of each other number is $\frac{1}{8}$.						
	Find t	the probability of					
	(i)	Rolling a double six	1				
	(ii)	Rolling the two dice so that neither is a six	1				
	(iii)	Only 1 six appears when the two dice are rolled	1				
WR 2 Ques		12 marks) Use a SEPARATE writing booklet.	Marks				
Ques	tion 7 (Marks				
	tion 7 (1 For th	the parabola with equation $x^2 = -8y$.					
Ques	tion 7 (1 For th		Marks 1				
Ques	tion 7 (1 For th	the parabola with equation $x^2 = -8y$.					
Ques	tion 7 (: For th i)	The parabola with equation $x^2 = -8y$. Find the coordinates of the focus (S) of the parabola.	1				
Ques	tion 7 (i For th i) ii)	The parabola with equation $x^2 = -8y$. Find the coordinates of the focus (S) of the parabola. Find the equation of the directrix of the parabola.	1 1				
Ques	tion 7 (i For th i) ii) iii)	The parabola with equation $x^2 = -8y$. Find the coordinates of the focus (S) of the parabola. Find the equation of the directrix of the parabola. Show that the point A(-8, -8) lies on the parabola. Find the equation of the focal chord of the parabola which	1 1 1				
Ques	tion 7 (i For th i) ii) iii) iii)	The parabola with equation $x^2 = -8y$. Find the coordinates of the focus (S) of the parabola. Find the equation of the directrix of the parabola. Show that the point A(-8, -8) lies on the parabola. Find the equation of the focal chord of the parabola which passes through A.	1 1 1 2				
Quest	tion 7 (1 For th i) ii) iii) iv) v)	The parabola with equation $x^2 = -8y$. Find the coordinates of the focus (S) of the parabola. Find the equation of the directrix of the parabola. Show that the point A(-8, -8) lies on the parabola. Find the equation of the focal chord of the parabola which passes through A. Find the equation of the tangent to the parabola at A.	1 1 1 2 2				

•

	2009 stion 7	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	B res	spectively. Find the	I the line $y = x + 2$ intersect at points A and coordinates of the points A and B. Hence y the parabola and the line.	4
(b)		ninute hand on a clo minutes	ock face is 12 centimetres long.	
	i.	Through what an	gle does the hand move (in radians)?	1
	ii.	How far does the	tip of the hand move?	1
	iii.	What area does th	he hand sweep through in this time?	1
	Line S	(impegnie mile to or	valuate $\int_{-\infty}^{2.5} f(x) dx$ to 1 desired place	2

(c) Use Simpson's rule to evaluate $\int_{1}^{1} f(x) dx$, to 1 decimal place 2 using the 7 function values in the table below.

3

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
f(x)	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(d) A function is defined by the following features:

٠

$$\frac{d^2 y}{dx^2} > 0 \text{ for } x < -1 \text{ and } 1 < x < 3.$$
$$\frac{dy}{dx} = 0 \text{ when } x = -3, 1 \text{ and } 5.$$

y = 0 when x = 1.

Sketch a possible graph of the function.