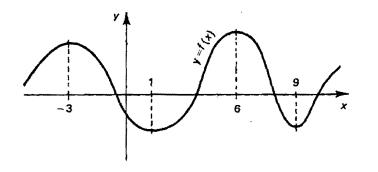
~

(a)	amou	the 20 days of a conference, the profit at the cafeteria is found to drop by a constant ant from each day to the next, becoming a loss after a certain amount of time. On the ay there was a profit of \$700 and on the 6^{th} day a loss of \$500.	
	(i)	Find the Profit on the first day and the amount by which the profit dropped from each day to the next.	2
	(ii)	Find the loss on the 20^{th} day.	1
	(iii)	Find the total profit (or loss) over the 20 days of the conference	1
(b)	A par	Tabola has equation $x - 2 = \frac{-y^2}{12}$	
	(i) (ii)	Sketch the parabola showing it's vertex, focus and directrix. Give the length of the focal chord which is perpendicular to the axis (i.e. the latus rectum)	3 1
(c)	(i)	Sketch the curves $y = \sin x$ and $y = \cos x$ on the same set of axes over the domain $0 \le x \le \pi$.	1
	(ii)	Use your graph to show that the equation $\sin x = \cos x$ has only one solution, $x = \frac{\pi}{4}$, over the domain $0 \le x \le \pi$.	1
	(iii)	Show that, at the point of intersection of the curves, the product of the gradients of the tangents to the two curves is $-\frac{1}{2}$.	2


WR 2004 Question 8

(12 Marks)

(a) For the Parabola $x^2 - 6x - 2y + 7 = 0$, find:

The focal length	2
The coordinates of the Vertex	1
The coordinates of the focus	1
The equation of the directrix	1
The length of the latus rectum.	1
	The coordinates of the Vertex The coordinates of the focus The equation of the directrix

- (b) The area below the curve $y = e^{-x}$, between the values x = 0 and x = 4 is 3 rotated around the x axis. Calculate the volume of the solid of revolution.
- (c) The graph of y = f(x) is drawn below.

When is the derivative of $f(x)$	i.	less than zero	1
	ii.	equal to zero	1

iii. Draw a possible sketch of y = f'(x) between the points x = 1 and x = 9 1

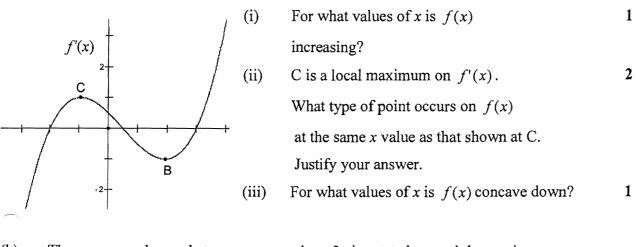
WR 2 Ques	2005 tion 8	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	(i)	Show that $y = mx$	$-2m^2$ is tangent to the parabola $x^2 = 8y$	2
	(ii)	Find the two value	es of m for which the tangent passes through (2, -	-4) 2
(b)	(i)	-	e with 5 function values to evaluate $\frac{\sqrt{144 - 9x^2}}{4} dx$	3
	ii)	value of the integra	$\frac{\pi ab}{4}$ where $a=4$ and $b=3$, gives the exact al above. Comment on the accuracy of your answer to the exact answer.	1 wer
~	Consi	der the parabola $2y$	$= x^2 - 4x .$	
	i)	Rewrite it in the fo	$a(y-k) = (x-h)^2$	2

ii)	Give the coordinates of the focus.	1
/		

iii) Give the equation of the directrix.

WR Ques	2006 stion 8	(12 N	/larks)	Use a Separate Sheet of paper	Marks
(a)	when	the are	•	ume of the solid of revolution formed he curve $y = \log_e 3x$, the y-axis, from ut the y-axis.	3
(b)	The a	ccelera	tion of a particl	e travelling in a straight line is given by	
				$\frac{d^2s}{dt^2} = 8 - 6t \; .$	
	The p	article i	is initially at the	e origin and travelling at 5 m/s to the right.	
	i.	Find	equations for th	ne velocity and displacement of the particle.	2
	ii.			e particle return to the origin? the particle at that time.	2
(c)	Solve	210g _a	$x - \log_a 4 = 2\log_a 4$	$\log_a 8$	3
(d)		-		raffle in which there are three prizes and 50 probability that she:	
		i.	does not win	a prize?	1
		ii.	wins the third	l prize?	1

WR 2007


(c)

Question 8 (12 marks) Begin a SEPARATE sheet of paper

Marks

(a) The graph of y = f'(x) is shown. The roots of f'(x) are x = -2, 0.5, and 3

C has x coordinate -0.95 and B has x coordinate 1.95

- (b) The curve $y = \log_e x$ between x = e and x = 3e is rotated around the x axis.
 - (i) Write the integral which gives the value of this volume.
 (ii) Complete the table for this function write your answer to 2 decimal places
 2

	x	е	2e	3e
	$\pi \times (f(x))^2$			
L				

(iii)	Use Simpson's Rule with 3 function values to approximate the volume.	2
What	is the domain and range for $y = \sqrt{9 - x^2}$	2

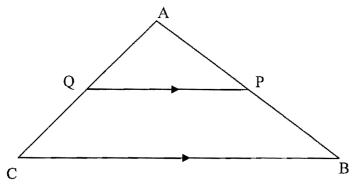
WR 2008

Question 8 (12 marks) Use a SEPARATE writing booklet.

Marks

1

2


1

1

a) A city has a population which is growing at a rate that is proportional to the current population. The population at time t years is given by $P = Ae^{kt}$

i) Show that
$$P = Ae^{kt}$$
 satisfies the equation $\frac{dP}{dt} = kP$.

- ii) If the population at the start of 2006 when t = 1 was 147 200 and at the start of 2007 when t = 2 was 154 800, find the values of A and k.
- iii) Find the population at the start of 2009.
- iv) Find during which year the population will first exceed 200 000.
- b) In the diagram below, P is the midpoint of the side AB of the \triangle ABC. PQ is drawn parallel to BC.

- i) Prove that $\triangle ABC \parallel \mid \triangle APQ$.
- ii) Explain why Q is the midpoint of AC.
- c) Find an approximation for $\int_{1}^{3} g(x) dx$ by using Simpson's Rule with the values in the 2 table below.

x	1	1.5	2	2.5	3
g(x)	12	8	0	3	5

d)

Evaluate $\sum_{n=1}^{\infty} n^2 - 1$

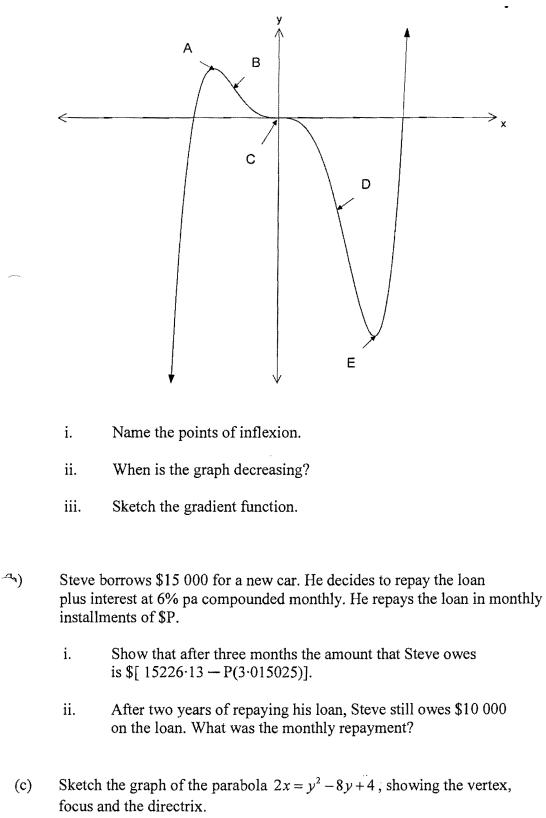
2

2

WR 2009 Question 8 (12 Marks)

1

1


1

2

3

4

(a) The graph of the curve y = f(x) is drawn below.

