(a) Over the 20 days of a conference, the profit at the cafeteria is found to drop by a constant amount from each day to the next, becoming a loss after a certain amount of time. On the $2^{\text {nd }}$ day there was a profit of $\$ 700$ and on the $6^{\text {th }}$ day a loss of $\$ 500$.
(i) Find the Profit on the first day and the amount by which the profit dropped from each day to the next.
(ii) Find the loss on the $20^{\text {th }}$ day.
(iii) Find the total profit (or loss) over the 20 days of the conference..
(b) A parabola has equation $x-2=\frac{-y^{2}}{12}$
(i) Sketch the parabola showing it's vertex, focus and directrix.
(ii) Give the length of the focal chord which is perpendicular to the axis (i.e. the latus rectum)
(c) (i) Sketch the curves $y=\sin x$ and $y=\cos x$ on the same set of axes over the domain $0 \leq x \leq \pi$.
(ii) Use your graph to show that the equation $\sin x=\cos x$ has only one solution, $x=\frac{\pi}{4}$, over the domain $0 \leq x \leq \pi$..
(iii) Show that, at the point of intersection of the curves, the product of the gradients of the tangents to the two curves is $-\frac{1}{2}$.
(a) For the Parabola $x^{2}-6 x-2 y+7=0$, find:
i. The focal length $\quad 2$
ii. The coordinates of the Vertex 1
iii. The coordinates of the focus 1
iv. The equation of the directrix $\quad 1$
v. The length of the latus rectum. 1
(b) The area below the curve $y=e^{-x}$, between the values $x=0$ and $x=4$ is 3 rotated around the x-axis. Calculate the volume of the solid of revolution.
(c) The graph of $y=f(x)$ is drawn below.

$\begin{array}{llll}\text { When is the derivative of } f(x) & \text { i. } & \text { less than zero } & \mathbf{1} \\ & \text { ii. } & \text { equal to zero } & \mathbf{1}\end{array}$
iii. Draw a possible sketch of $y=f^{\prime}(x)$ between the points $x=1$ and $x=9 \quad 1$
(a) (i) Show that $y=m x-2 m^{2}$ is tangent to the parabola $x^{2}=8 y \quad 2$
(ii) Find the two values of m for which the tangent passes through (2, -4)
(b) (i) Use Simpson's rule with 5 function values to evaluate

3

$$
\int_{0}^{4} \frac{\sqrt{144-9 x^{2}}}{4} d x
$$

ii) The formula $\mathrm{A}=\frac{\pi a b}{4}$ where $a=4$ and $b=3$, gives the exact value of the integral above. Comment on the accuracy of your answer from (i) compared to the exact answer.

Consider the parabola $2 y=x^{2}-4 x$.
i) Rewrite it in the form $4 a(y-k)=(x-h)^{2} \quad 2$
ii) Give the coordinates of the focus. 1
iii) Give the equation of the directrix. 1

Question 8

(a) Find, in exact form, the volume of the solid of revolution formed when the area bounded by the curve $y=\log _{e} 3 x$, the y-axis, from $y=1$ to $y=3$ is rotated about the y-axis.
(b) The acceleration of a particle travelling in a straight line is given by

$$
\frac{d^{2} s}{d t^{2}}=8-6 t
$$

The particle is initially at the origin and travelling at $5 \mathrm{~m} / \mathrm{s}$ to the right.
i. Find equations for the velocity and displacement of the particle.

2
ii. At what time does the particle return to the origin?

Find the velocity of the particle at that time.
(c) Solve $2 \log _{a} x-\log _{a} 4=2 \log _{a} 8$

3
(d) A woman buys a ticket in a raffle in which there are three prizes and 50 tickets are sold. What is the probability that she:
i. does not win a prize? $\quad \mathbf{1}$
ii. wins the third prize? 1
(a) The graph of $y=f^{\prime}(x)$ is shown. The roots of $f^{\prime}(x)$ are $x=-2,0.5$, and 3

C has x coordinate -0.95 and B has x coordinate 1.95

(i) For what values of x is $f(x)$ increasing?
(ii) C is a local maximum on $f^{\prime}(x)$. What type of point occurs on $f(x)$ at the same x value as that shown at C. Justify your answer.
(iii) For what values of x is $f(x)$ concave down?
(b) The curve $y=\log _{e} x$ between $x=e$ and $x=3 e$ is rotated around the x axis.
(i) Write the integral which gives the value of this volume.
(ii) Complete the table for this function write your answer to 2 decimal places

x	e	$2 e$	$3 e$
$\pi \times(f(x))^{2}$			

(iii) Use Simpson's Rule with 3 function values to approximate the volume.
(c) What is the domain and range for $y=\sqrt{9-x^{2}}$

Question 8 (12 marks) Use a SEPARATE writing booklet.
a) A city has a population which is growing at a rate that is proportional to the current population. The population at time t years is given by

$$
P=A e^{k t}
$$

i) Show that $P=A e^{k t}$ satisfies the equation $\frac{d P}{d t}=k P$.
ii) If the population at the start of 2006 when $t=1$ was 147200 and at the start of 2007 when $t=2$ was 154800 , find the values of A and k.
iii) Find the population at the start of 2009.
iv) Find during which year the population will first exceed 200000 .
b) In the diagram below, P is the midpoint of the side AB of the $\triangle \mathrm{ABC}$. PQ is drawn parallel to BC .

i) Prove that $\triangle \mathrm{ABC} \| \triangle \mathrm{APQ}$. 2
ii) Explain why Q is the midpoint of AC .
c) Find an approximation for $\int_{1}^{3} g(x) d x$ by using Simpson's Rule with the values in the $\quad 2$ table below.

x	1	1.5	2	2.5	3
$g(x)$	12	8	0	3	5

d) Evaluate $\sum_{n=2}^{5} n^{2}-1$
(a) The graph of the curve $y=f(x)$ is drawn below.

i. Name the points of inflexion. $\quad \mathbf{1}$
ii. When is the graph decreasing? $\quad 1$
iii. Sketch the gradient function.
4) Steve borrows $\$ 15000$ for a new car. He decides to repay the loan plus interest at 6% pa compounded monthly. He repays the loan in monthly installments of \$P.
i. Show that after three months the amount that Steve owes is $\$[15226 \cdot 13-P(3 \cdot 015025)]$.
ii. After two years of repaying his loan, Steve still owes $\$ 10000$ on the loan. What was the monthly repayment?
(c) Sketch the graph of the parabola $2 x=y^{2}-8 y+4$; showing the vertex, focus and the directrix.

