2009
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time -5 minutes.
- Working Time -3 hours.
- Write using a blue or black pen.
- Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- Attempt Questions 1-10.
- All questions are of equal value.
(a) Express $3 \cdot 5 \ddot{3} 1$ as a fraction in simplest form. 2
(b) If $\tan \theta=\frac{7}{8}$ and $\cos \theta<0$, find the exact value of $\operatorname{cosec} \theta$
(c) Evaluate $\frac{3.24^{2}-2.1^{2}}{\sqrt{36+2.1}}$ correct to 3 significant figures.
(d) Solve $|15-4 x| \leq 3$
(e) If $k=\frac{1}{3} m\left(v^{2}-u^{2}\right)$ find the value of m when $k=724, v=14 \cdot 2$ and $u=7.4$.
(f) Find the period and amplitude for the graph of $3 y=\sin \left(2 x-\frac{\pi}{4}\right)$.
(g) Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for $\$ 67 \cdot 50$, find the cost price.

Question 2 (12 Marks)

Use a Separate Sheet of paper
Marks

The lines $A B$ and $C B$ have equations $x-2 y+9=0$ and $4 x-y-20=0$ respectively.
(a) Find the coordinates of the point B.
(b) Show that the equation of the line $A C$ is $9 x+10 y-45=0$.
(c) Calculate the distance $A C$ in exact form.
(d) Find the equation of the line perpendicular to $B C$ which passes passes through A.
(e) Calculate the shortest distance between the point B and the line $A C$.

Hence find the area of the triangle $A B C$.
(f) State the inequalities that together define the area bounded by 2 the triangle $A B C$.

Question 3 (12 Marks) Use a Separate Sheet of paper Marks
(a) Differentiate with respect to x.
i. $3 x \sqrt[3]{x} \quad 2$
ii. $\frac{\sin 2 x}{e^{2 x}} \quad 2$
(b) Find:
i. $\quad \int \frac{d x}{e^{3 x}}$

2
ii. $\quad \int_{0}^{\pi} \sec ^{2} \frac{x}{4} d x$.

2
(c) If α and β are the roots of the equation $3 x^{2}-4 x-7=0$

Find:
i. $\alpha+\beta$. 1
ii. $2 \alpha^{2}+2 \beta^{2}$. 1
iii. the equation with roots $2 \alpha^{2}$ and $2 \beta^{2}$. 2

Question 4 (12 Marks)
(a) The right triangle ABC is shown below. $\mathrm{BC} \| \mathrm{FE}, \mathrm{BD} \perp \mathrm{AC}, \angle \mathrm{FBD}=\theta$, $\mathrm{BF}=x, \mathrm{EF}=y$ and $\mathrm{BD}=z$.

Prove that:
i. $\angle \mathrm{FEA}=\theta \quad 2$
ii. $\mathrm{AF}=y \tan \theta \quad 1$
iii. $z=(x+y \tan \theta) \cos \theta \quad 1$
iv. $z=x \cos \theta+y \sin \theta \quad 1$
(b) The federal government distributes $\$ 500$ million in order to stimulate the economy. Each recipient spends 80% of the money that he or she receives. In turn, the secondary recipient spends 80% of the money that they receive, and so on. What was the total spending that results from the original $\$ 500$ million into the economy?
(c) A ship sails from port A, 60 nautical miles due west, to a port B .

It then proceeds a distance of 50 nautical miles on a bearing of 210° to a port C.
i. Draw a diagram to illustrate the information given.
ii. Find the distance (nearest nautical mile) and bearing of C from A.

Question 5 (12 Marks) Use a Separate Sheet of paper Marks
(a) In a raffle in which 1000 tickets are sold, there is a first prize of $\$ 1000$, a second prize of $\$ 500$ and a third prize of $\$ 200$. The prize winning tickets are drawn consecutively without replacement, with the first ticket winning first prize.

Find the probability that:
i. a person buying one ticket in the raffle wins:
a. first prize. 1
β at least $\$ 500 \quad 1$
γ. no prizes. 1
ii. a person buying two tickets in the raffle wins:
a. at least $\$ 500$

ABCD is a parallelogram, $\mathrm{BP}=\mathrm{DQ}$.

Prove $D P=B Q$
(c) i. Is the series $\log 3+\log 9+\log 27+\ldots \ldots$. arithmetic or geometric?

Give reasons for your answer.
iii. Find the sum of the first 10 terms of the series.
(d) Find the radius and centre of the circle with equation

$$
4 x^{2}-4 x+4 y^{2}+24 y+21=0
$$

Question 6 (12 Marks) Use a Separate Sheet of paper Marks
(a) A curve has a gradient function with equation $\frac{d y}{d x}=6(x-1)(x-2)$.
i. If the curve passes through the point $(1,2)$, what is the
equation of the curve?
ii. Find the coordinates of the stationary points and determine
their nature.
iii. Find any points of inflexion. 2
iv. Graph the function showing all the main features. 2
(b) Show that $\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta}=\tan \theta$ 3
(c) Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 2 \theta}{3 \theta}$

1

Question 7 ($\mathbf{1 2}$ Marks) Use a Separate Sheet of paper

(a) The parabola $y=x^{2}$ and the line $y=x+2$ intersect at points A and B respectively. Find the coordinates of the points A and B. Hence find the area bounded by the parabola and the line.
(b) The minute hand on a clock face is 12 centimetres long. In 40 minutes
i. Through what angle does the hand move (in radians)?
ii. How far does the tip of the hand move? 1
iii. What area does the hand sweep through in this time?
(c) Use Simpson's rule to evaluate $\int_{1}^{2.5} f(x) d x$, to 1 decimal place using the 7 function values in the table below.

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
$f(x)$	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(d) A function is defined by the following features:

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}>0 \text { for } x<-1 \text { and } 1<x<3 . \\
& \frac{d y}{d x}=0 \text { when } x=-3,1 \text { and } 5 . \\
& y=0 \text { when } x=1 .
\end{aligned}
$$

Sketch a possible graph of the function.

Question 8 (12 Marks) Use a Separate Sheet of paper Marks
(a) The graph of the curve $y=f(x)$ is drawn below.

i. Name the points of inflexion. 1
ii. When is the graph decreasing? 1
iii. Sketch the gradient function. 1
(b) Steve borrows $\$ 15000$ for a new car. He decides to repay the loan plus interest at 6% pa compounded monthly. He repays the loan in monthly installments of \$P.
i. Show that after three months the amount that Steve owes is $\$[15226 \cdot 13-\mathrm{P}(3 \cdot 015025)]$.
ii. After two years of repaying his loan, Steve still owes $\$ 10000$ on the loan. What was the monthly repayment?
(c) Sketch the graph of the parabola $2 x=y^{2}-8 y+4$, showing the vertex, focus and the directrix.
(a) A particle moves in a straight line so that its displacement (in m) from a fixed point O at time t seconds is given by $x=2 \sin 2 t, 0 \leq t \leq 2 \pi$.

Find:
i. The initial velocity
ii. The acceleration after $\frac{\pi}{12}$ seconds.
iii. When the particle is at rest.
iv. The displacement of the particle when it is at rest.
(b) The area bounded by the curve $y=\sqrt{\frac{2 x}{3 x^{2}-1}}$ between the lines $x=1$ and
$x=3$ is rotated about the x-axis. Find the volume of the solid of revolution formed.
(c) The rate at which Carbon Dioxide will be produced when conducting an experiment is given by $\frac{d V}{d t}=\frac{1}{100}\left(30 t-t^{2}\right)$ where $V \mathrm{~cm}^{3}$ is the volume of gas produced after t minutes.
i. At what rate is the gas being produced 15 minutes after the experiment begins.
ii. How much Carbon Dioxide has been produced during this time?
(a) An open cylindrical can is made from a sheet of metal with an area of $300 \mathrm{~cm}^{2}$.
i. Show that the volume of the can is given by $V=150 r-\frac{1}{2} \pi r^{3}$.
ii. Find the radius of the cylinder that gives the maximum volume and calculate this volume.
(b) The population of a certain town grows at a rate proportional to the population. If the population grows from 20000 to 25000 in two years, find:
i. The population of the town, to the nearest hundred, after a further 8 years.
ii. Calculate the rate of change at this time. 1
(c) If $\log _{a} 2+2 \log _{a} x-\log _{a} 6=\log _{a} 3$ find the value of x. 2

End of Examination.

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}, a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

