2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time 5 minutes.
- Working Time 3 hours.
- Write using a blue or black pen.
- o Approved calculators may be used.
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (120)

- o Attempt Questions 1-10.
- o All questions are of equal value.

Questi	on 1 (12 Marks) Use a Separate Sheet of paper	Marks
(a)	Express $3 \cdot 531$ as a fraction in simplest form.	2
(b)	If $\tan \theta = \frac{7}{8}$ and $\cos \theta < 0$, find the exact value of $\csc \theta$	1
(c)	Evaluate $\frac{3.24^2 - 2.1^2}{\sqrt{36 + 2.1}}$ correct to 3 significant figures.	1
(d)	Solve $ 15 - 4x \le 3$	2
(e)	If $k = \frac{1}{3}m(v^2 - u^2)$ find the value of <i>m</i> when $k = 724$, $v = 14.2$ and $u = 7.4$.	2
(f)	Find the period and amplitude for the graph of $3y = \sin\left(2x - \frac{\pi}{4}\right)$.	2
(g)	Paint at the local hardware store is sold at a profit of 30% on the cost price. If a drum of paint is sold for 67.50 , find the cost price.	2

2

Question 2 (12 Marks)

Use a Separate Sheet of paper

Marks

۰.

The lines AB and CB have equations x-2y+9=0 and 4x-y-20=0 respectively.

(a)	Find the coordinates of the point B.	2
(b)	Show that the equation of the line AC is $9x+10y-45=0$.	2
(c)	Calculate the distance AC in exact form.	2
(d)	Find the equation of the line perpendicular to BC which passes passes through A .	2
(e)	Calculate the shortest distance between the point B and the line AC . Hence find the area of the triangle ABC .	2
(f)	State the inequalities that together define the area bounded by the triangle ABC .	2

Quest	ion 3	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	Differe	entiate with respect to a	x.	
	i	3r 3/r		2

i.
$$3x\sqrt[3]{x}$$
 2
ii. $\frac{\sin 2x}{e^{2x}}$ 2

(b) Find:

i.
$$\int \frac{dx}{e^{3x}}$$
 2

ii.
$$\int_0^{\pi} \sec^2 \frac{x}{4} \, dx$$
. 2

(c) If α and β are the roots of the equation $3x^2 - 4x - 7 = 0$ Find:

i. $\alpha + \beta$. 1

ii.
$$2\alpha^2 + 2\beta^2$$
. 1

iii. the equation with roots
$$2\alpha^2$$
 and $2\beta^2$. 2

Question 4 (12 Marks)

Use a Separate Sheet of paper

Marks

The right triangle ABC is shown below. BC || FE, BD \perp AC, \angle FBD = θ , (a) BF = x, EF = y and BD = z.

Prove that:

i.	$\angle FEA = \theta$	2
ii.	$AF = y \tan \theta$	1
iii.	$z = (x + y \tan \theta) \cos \theta$	1
iv.	$z = x\cos\theta + y\sin\theta$	1
The f	adaral gavarumant diatributas \$500 million in order to atimulate	2

- (b) The federal government distributes \$500 million in order to stimulate the economy. Each recipient spends 80% of the money that he or she receives. In turn, the secondary recipient spends 80% of the money that they receive, and so on. What was the total spending that results from the original \$500 million into the economy?
- A ship sails from port A, 60 nautical miles due west, to a port B. (c) It then proceeds a distance of 50 nautical miles on a bearing of 210° to a port C.

i.	Draw a diagram to illustrate the information given.	1
ii.	Find the distance (nearest nautical mile) and bearing of C from A.	4

___/

Questi	ion 6	(12 Marks)	Use a Separate Sheet of paper	Marks	
(a) A c		curve has a gradient function with equation $\frac{dy}{dx} = 6(x-1)(x-2)$.			
	i.	If the curve passe equation of the cu	es through the point (1, 2), what is the urve?	2	
	ii.	Find the coordina their nature.	tes of the stationary points and determine	2	
	iii.	Find any points o	f inflexion.	2	
	iv.	Graph the function	n showing all the main features.	2	
(b)	Shov	w that $\frac{(1 + \tan^2)}{\cos^2}$	$\frac{\partial \theta}{\partial cot\theta} = \tan\theta$	3	

(c) Evaluate
$$\lim_{\theta \to 0} \frac{\sin 2\theta}{3\theta}$$
 1

Questi	ion 7	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	The p B res find t	4		
(b)	The r In 40	ninute hand on a clo minutes	ock face is 12 centimetres long.	
	i.	Through what an	gle does the hand move (in radians)?	1
	ii.	How far does the	tip of the hand move?	1
	iii.	What area does the	he hand sweep through in this time?	1
(c)	Use S using	Simpson's rule to ev the 7 function valu	valuate $\int_{1}^{2.5} f(x) dx$, to 1 decimal place uses in the table below.	2

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
f(x)	3.43	2.17	0.38	1.87	2.65	2.31	1.97

(d) A function is defined by the following features:

$$\frac{d^2 y}{dx^2} > 0 \text{ for } x < -1 \text{ and } 1 < x < 3.$$
$$\frac{dy}{dx} = 0 \text{ when } x = -3, 1 \text{ and } 5.$$

y = 0 when x = 1.

Sketch a possible graph of the function.

3

Į

Question 8 (12 Marks) Use a Separate Sheet of paper

Marks

1

(a) The graph of the curve y = f(x) is drawn below.

ii.	When is the graph decreasing?	1
iii.	Sketch the gradient function.	1

(b) Steve borrows \$15 000 for a new car. He decides to repay the loan plus interest at 6% pa compounded monthly. He repays the loan in monthly installments of \$P.

i.	Show that after three months the amount that Steve owes is $[15226 \cdot 13 - P(3 \cdot 015025)]$.	2
ii.	After two years of repaying his loan, Steve still owes \$10 000 on the loan. What was the monthly repayment?	3

(c) Sketch the graph of the parabola $2x = y^2 - 8y + 4$, showing the vertex, 4 focus and the directrix.

<u>2009</u>	<u>Trial H</u>	SC Examination	<u>Mai</u>	<u>thematics</u>
Ques	tion 9	(12 Marks)	Use a Separate Sheet of paper	Marks
(a)	A par fixed	ticle moves in a str point O at time <i>t</i> se	aight line so that its displacement (in m) from a econds is given by $x = 2\sin 2t$, $0 \le t \le 2\pi$.	
	Find:			
	i.	The initial veloci	ty	1
	ii.	The acceleration	after $\frac{\pi}{12}$ seconds.	1
	iii.	When the particle	e is at rest.	2
	iv.	The displacement	t of the particle when it is at rest.	2
(b)	The an $x = 3$ for the revolution $x = 3$ for t	rea bounded by the is rotated about the ition formed.	curve $y = \sqrt{\frac{2x}{3x^2 - 1}}$ between the lines $x = 1$ and x-axis. Find the volume of the solid of	3

- The rate at which Carbon Dioxide will be produced when conducting (c) an experiment is given by $\frac{dV}{dt} = \frac{1}{100} (30t - t^2)$ where $V \text{ cm}^3$ is the volume of gas produced after t minutes.
 - At what rate is the gas being produced 15 minutes after the i. 1 experiment begins.
 - How much Carbon Dioxide has been produced during this 2 ii. time?

<u>2009 (</u>	Mathematics		
Quest	ion 10	(12 Marks) Use a Separate Sheet of paper	Marks
(a)	An op of 300	en cylindrical can is made from a sheet of metal with an area cm^2 .	
	i.	Show that the volume of the can is given by $V = 150r - \frac{1}{2}\pi r^3$. 2
	ii.	Find the radius of the cylinder that gives the maximum volum and calculate this volume.	ne 4
(b)	The popula popula years,	opulation of a certain town grows at a rate proportional to the tion. If the population grows from 20 000 to 25 000 in two find:	
	i.	The population of the town, to the nearest hundred, after a further 8 years.	3
	ii.	Calculate the rate of change at this time.	1
(c)	If log	$a_{a}^{2} + 2\log_{a} x - \log_{a} 6 = \log_{a} 3$ find the value of x.	2

/=

End of Examination.

<u>Mathematics</u>

STANDARD INTEGRALS

 $\int x^n \, dx \qquad = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$ $\int \frac{1}{x} dx = \ln x, \quad x > 0$ $\int e^{ax} dx \qquad \qquad = \frac{1}{a} e^{ax}, \quad a \neq 0$ $\int \cos ax \, dx \qquad = \frac{1}{a} \sin ax, \ a \neq 0$ $\int \sin ax \, dx \qquad = -\frac{1}{a} \cos ax, \quad a \neq 0$ $\int \sec^2 ax \, dx \qquad = \frac{1}{a} \tan ax, \quad a \neq 0$ $\int \sec ax \, \tan ax \, dx = \frac{1}{a} \sec ax, \ a \neq 0$ $\int \frac{1}{a^2 + x^2} dx \qquad = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$ $\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \ a > 0, \ -a < x < a$ $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln\left(x + \sqrt{x^2 - a^2}\right), \quad x > a > 0$ $\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln\left(x + \sqrt{x^2 + a^2}\right)$