2009

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time- 5 minutes
- Working Time -2 hours
- Write using a blue or black pen
- Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (84)

- Attempt Questions 1-7
- All questions are of equal value

Question 1 (12 Marks) Begin a new booklet.
(a) Divide the interval from $\mathrm{A}(-3,6)$ to $\mathrm{B}(12,-4)$ in the ratio $2: 3$
(b) Find the value of $\sin 105^{\circ}$ in simplest exact form 2
(c) Solve the inequality $\frac{4}{1-x} \leq 3$ and graph your solution on the number line
(d) Use the substitution $u=\cos x$, to find $\int \cos ^{2} x \sin x d x$
(e) Find $\lim _{x \rightarrow \infty} \frac{3 x^{3}-2 x}{x^{2}+4}$
(f) Find the acute angle between the lines: $\quad x-\sqrt{3} y+1=0$ 2

$$
y=x-4
$$

Question 2 (12 Marks) Begin a new booklet.
(a) i) Show that $x-2$ is a factor of $x^{3}-4 x^{2}+7 x-6$

Marks

1
ii) Show why $x^{3}-4 x^{2}+7 x-6=0$ has only 1 real root. 2
(b) (i) Prove $\frac{1-\cos 2 x}{\sin 2 x}=\tan x$
(ii) Hence express $\tan 15^{\circ}$ in simplest exact form. 1
(c) Find the value of $\int_{\frac{2}{\sqrt{3}}}^{2 \sqrt{3}} \frac{d x}{x^{2}+4}$ 3
(d) How many distinct permutations of the letters of the word ARRANGE are possible
(i) In a straight line $\quad 1$
(ii) In a straight line when the "word" begins and ends with the letter R. 1
(ii) In a circle 2

End of Question 2

Question 3 (12 Marks) Begin a new booklet.

Marks

(a) Determine the exact value of $\int_{2}^{3} \frac{x d x}{x^{2}-2}$
(b) State the domain and range of $y=\cos ^{-1}\left(\frac{3 x}{2}\right)$
(c) If we take $t=\tan \frac{\theta}{2}$ then $\tan \theta=\frac{2 t}{1-t^{2}}$

Use the t results or otherwise to obtain θ correct to the nearest minute
when $\frac{7 \sin \theta}{2}+2 \cos \theta=4$
(d) A tower CX is observed at an angle of elevation 14° from a point A on level ground. The same tower is observed from $B, 1 \mathrm{~km}$ from A, with an angle of elevation 17°. $A \hat{C B}=120^{\circ} . \mathrm{C}$ is the base of the tower.
(i) Draw a diagram showing this information.
(ii) Calculate h, the height of the tower CX. (nearest m)

End of Question 3

Question 4 (12 Marks) Begin a new booklet.
(a) The polynomial equation $x^{3}-5 x^{2}+7 x+5=0$ has 3 roots, α, β, γ
(i) Find $\alpha+\beta+\gamma \quad 1$
(ii) Find $\alpha \beta+\beta \gamma+\gamma \alpha \quad 1$
(iii) Find $\alpha^{2}+\beta^{2}+\gamma^{2} \quad 2$
(b) (i) Express $\sqrt{3} \sin 2 \theta-\cos 2 \theta$ in the form $R \sin (2 \theta-\alpha), \alpha$ acute. 2
(ii) Hence solve $\sqrt{3} \sin 2 \theta-\cos 2 \theta=1 ; 0 \leq \theta \leq \pi$. Answer in exact form. 2
(c) Newton's Law of Cooling states that the rate of change of temperature of a body is proportional to the difference between the temperature of the body and its surrounds.

$$
\frac{d T}{d t}=-k(T-D) \quad \text { where } D \text { is the surrounding temperature }
$$

(i) Show that $T=D+C e^{-k t}$ satisfies Newton's Law. 1
(ii) An ingot of Aluminium has an initial temperature of $1350^{\circ} \mathrm{C} \quad 3$ After 10 minutes in an environment at $25^{\circ} \mathrm{C}$ its temperature has fallen to $720^{\circ} \mathrm{C}$. What total time elapses for the ingot to cool to $50^{\circ} \mathrm{C}$

End of Question 4

Question 5 (12 Marks) Begin a new booklet.
(a) The function $f(x)=x^{4}-5 x^{3}+11 x^{2}-12 x+6$

This function has only 1 minimum near $x=1.3$
(i) Use one application of Newton's Method to obtain
a better approximation to the x value of this minimum.
(ii) Justify why $f(x)=0$ has no roots 1
(b) How many times should a die be thrown so that the probability of 2 throwing an even number is greater than 0.99 ?
(c) A cube, side s, is growing at a rate of $200 \mathrm{~cm}^{3}$ per second. 3 At what rate is the surface area growing at the moment when $s=15 \mathrm{~cm}$?
(d) Prove by Mathematical Induction that, 3
$(n)^{3}+(n+1)^{3}+(n+2)^{3}$ is divisible by 9 for all positive whole numbers n

End of Question 5

Question 6 (12 Marks) Begin a new booklet.
(a) Consider the function $h(x)=\frac{3 x}{1-x^{2}}$ for which $\lim _{x \rightarrow \infty} \frac{3 x}{1-x^{2}}=0$
(i) Describe the domain of $h(x)$
(ii) Find $h(-2)$ and $h(2)$
(iii) Show why $h(x)$ has no turning points
(iv) Sketch $h(x)$ showing the important features
(b) Find the volume generated when $y=\sec x$ between $x=0$ and $x=\frac{\pi}{3}$ is rotated around the x axis.

Express your answer in simplest exact form.
(c) (i) Prove that $\frac{d^{2} x}{d t^{2}}=\frac{d}{d x}\left(\frac{v^{2}}{2}\right)$
(ii) A particle is moving in a straight line with $v^{2}=36-4 x^{2}$
α Prove the particle is undergoing SHM 1
$\beta \quad$ What is the amplitude and period of the motion? 2
$\gamma \quad$ If the particle is initially at the origin, write an expression for its displacement in terms of t

End of Question 6

Question 7 (12 Marks) Begin a new booklet.
(a) AB is a chord in a circle. AB is produced to O outside the circle.

From O. the tangent OT is drawn to the circle.
The bisector of $T \hat{O} B$ Meets TB at P and TA at Q .
Prove $\triangle T P Q$ is isosceles

(b) A rock is hurled from the top of a 15 m cliff with an initial velocity of $26 \mathrm{~ms}^{-1}$ at an angle of projection equal to $\tan ^{-1}\left(\frac{5}{12}\right)$ above the horizontal.

The cliff overlooks a flat paddock.
The equations of motion of the stone are $\ddot{x}=0$ and $\ddot{y}=-10$
(i) Taking the origin as the base of the cliff, show the components of the rock's displacement are, $x=24 t$ and $y=-5 t^{2}+10 t+15$
(ii) Calculate the time until impact with the paddock, and the distance of the impact from the base of the cliff.

Question 7 (12 Marks) continued
(c) The parabola $x^{2}=4 y$ is shown in the diagram.

The point P has coordinates $\left(2 t, t^{2}\right) . \mathrm{S}(0,1)$ is the focus and
M is the foot of the perpendicular from P on the directrix. MP is produced to A. BPC is tangent to the parabola at P .
(i) Find the length PS and PM. Describe $\triangle P S M$
(ii) Find the gradient of the tangent BPC and of SM.

What is true about the tangent and SM?
(iii) Prove $A \hat{P} B=S \hat{P} C$

End of Examination

STANDARD INTEGRALS

$$
\text { NOTE : } \ln x=\log _{\varepsilon} x, \quad x>0
$$

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x=0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, a=0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, \quad a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, \quad a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, \quad a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)
\end{aligned}
$$

