2009 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading Time- 5 minutes
- \circ Working Time 2 hours
- Write using a blue or black pen
- o Approved calculators may be used
- A table of standard integrals is provided at the back of this paper.
- All necessary working should be shown for every question.
- Begin each question on a fresh sheet of paper.

Total marks (84)

- o Attempt Questions 1-7
- o All questions are of equal value

Questio	on 1 (12 Marks) Begin a new booklet.	Marks
(a)	Divide the interval from A (-3, 6) to B (12, -4) in the ratio 2:3	2
(b)	Find the value of sin105° in simplest exact form	2
(c)	Solve the inequality $\frac{4}{1-x} \le 3$ and graph your solution on the number line	ne 3
(d)	Use the substitution $u = \cos x$, to find $\int \cos^2 x \sin x dx$	2
(e)	Find $\lim_{x \to \infty} \frac{3x^3 - 2x}{x^2 + 4}$	1
(f)	Find the acute angle between the lines: $x - \sqrt{3}y + 1 = 0$	2

$$y = x - 4$$

7

Question 2		(12 Marks)	Begin a new booklet.	Marks
(a)	i)	Show that $x-2$ is a f	factor of $x^3 - 4x^2 + 7x - 6$	1
	ii)	Show why $x^3 - 4x^2 + 4x^2 +$	+7x-6=0 has only 1 real root.	2
(b)	(i)	Prove $\frac{1-\cos 2x}{\sin 2x} = \tan x$	n x	1
	(ii)	Hence express tan15	° in simplest exact form.	1
(c)	Find the value of $\int_{\frac{2}{\sqrt{3}}}^{2\sqrt{3}} \frac{dx}{x^2 + 4}$			3
(d) How many distinct permutations of the letters of the word		ions of the letters of the word ARRANGE are		
	possible			
	(i)	In a straight line		1
	(ii)	In a straight line when	n the "word" begins and ends with the letter R.	1
	(ii)	In a circle		2

Mathematics Extension 1

Question 3 (12 Marks) Begin a new booklet.

(a) Determine the exact value of
$$\int_{2}^{3} \frac{x dx}{x^{2} - 2}$$

(b) State the domain and range of
$$y = \cos^{-1}\left(\frac{3x}{2}\right)$$

(c) If we take
$$t = \tan \frac{\theta}{2}$$
 then $\tan \theta = \frac{2t}{1-t^2}$ 3

Use the *t* results or otherwise to obtain θ correct to the nearest minute

when
$$\frac{7\sin\theta}{2} + 2\cos\theta = 4$$

(d) A tower CX is observed at an angle of elevation 14° from a point A on level ground. The same tower is observed from B, 1 km from A, with an angle of elevation 17°.

$$\hat{ACB} = 120^\circ$$
. C is the base of the tower.

- (i) Draw a diagram showing this information. 1
- 3 (ii) Calculate *h*, the height of the tower CX. (nearest m)

End of Question 3

3

2

Marks

(i)

1

Question 4		(12 Marks)	Begin a new booklet.	Marks
(a)	The p	olynomial equ	ation $x^3 - 5x^2 + 7x + 5 = 0$ has 3 roots, α , β , γ	
	(i)	Find $\alpha + \beta + \beta$	-γ	1
	(ii)	Find $\alpha\beta + \beta$	$\gamma + \gamma \alpha$	1
	(iii)	Find $\alpha^2 + \beta$	$^{2} + \gamma^{2}$	2
(b)	(i)	Express $\sqrt{3}$ s	$\sin 2\theta - \cos 2\theta$ in the form $R\sin(2\theta - \alpha)$, α acute.	2

- (ii) Hence solve $\sqrt{3}\sin 2\theta \cos 2\theta = 1$; $0 \le \theta \le \pi$. Answer in exact form. 2
- Newton's Law of Cooling states that the rate of change of temperature of a body
 is proportional to the difference between the temperature of the body and its surrounds.

$$\frac{dT}{dt} = -k(T - D) \text{ where } D \text{ is the surrounding temperature}$$

Show that $T = D + Ce^{-kt}$ satisfies Newton's Law.

(ii) An ingot of Aluminium has an initial temperature of $1350^{\circ}C$ 3 After 10 minutes in an environment at $25^{\circ}C$ its temperature has fallen to $720^{\circ}C$. What total time elapses for the ingot to cool to $50^{\circ}C$

Questi	on 5	(12 Marks)	Begin a new booklet.	Marks
(a)	The fu	nction $f(x) = x$	$x^4 - 5x^3 + 11x^2 - 12x + 6$	
This function has only 1 minimum near $x = 1.3$		1 minimum near $x = 1.3$		
	(i)	Use one applic	ation of Newton's Method to obtain	3
		a better approx	timation to the x value of this minimum.	
	(ii)	Justify why f	(x) = 0 has no roots	1
(b)	How n	nany times shou	ald a die be thrown so that the probability of	2
	throwi	ng an even num	ber is greater than 0.99?	
(c)	A cube	e, side s, is grow	ving at a rate of 200cm ³ per second.	3
	At what	at rate is the sur	face area growing at the moment when $s = 15$ cm?	
(d)	Prove	by Mathematica	al Induction that,	3
	$(n)^{3} + $	$(n+1)^3 + (n+2)^3$	β is divisible by 9 for all positive whole numbers <i>n</i>	

Question 6 (12 Marks) Begin a new booklet.

2

(a) Consider the function
$$h(x) = \frac{3x}{1-x^2}$$
 for which $\lim_{x \to \infty} \frac{3x}{1-x^2} = 0$

(i)	Describe the domain of $h(x)$	1
(ii)	Find $h(-2)$ and $h(2)$	1
(iii)	Show why $h(x)$ has no turning points	1
(iv)	Sketch $h(x)$ showing the important features	2

(b) Find the volume generated when
$$y = \sec x$$

between
$$x = 0$$
 and $x = \frac{\pi}{3}$ is rotated around the x axis.

Express your answer in simplest exact form.

(c) (i) Prove that
$$\frac{d^2x}{dt^2} = \frac{d}{dx} \left(\frac{v^2}{2} \right)$$
 1

(ii) A particle is moving in a straight line with
$$v^2 = 36 - 4x^2$$

α	Prove the particle is undergoing SHM	1
β	What is the amplitude and period of the motion?	2

Marks

3

Question 7 (12 Marks) Begin a new booklet.

(a) AB is a chord in a circle. AB is produced to O outside the circle. From O. the tangent OT is drawn to the circle. The bisector of $T\hat{O}B$ Meets TB at P and TA at Q. Prove ΔTPQ is isosceles

(b) A rock is hurled from the top of a 15m cliff with an initial velocity of 26ms^{-1} at an angle of projection equal to $\tan^{-1}\left(\frac{5}{12}\right)$ above the horizontal.

The cliff overlooks a flat paddock.

The equations of motion of the stone are $\ddot{x} = 0$ and $\ddot{y} = -10$

- (i) Taking the origin as the base of the cliff, show the components of 2 the rock's displacement are, x = 24t and $y = -5t^2 + 10t + 15$
- (ii) Calculate the time until impact with the paddock, and the distance 2 of the impact from the base of the cliff.

Question 7 continues on page 9

Question 7 (12 Marks) continued

Marks

2

1

- (c) The parabola x² = 4y is shown in the diagram. The point P has coordinates (2t, t²). S(0, 1) is the focus and M is the foot of the perpendicular from P on the directrix. MP is produced to A. BPC is tangent to the parabola at P.
 (i) Find the length PS and PM. Describe Δ*PSM* 2
- (ii) Find the gradient of the tangent BPC and of SM.

What is true about the tangent and SM?

(iii) Prove
$$APB = SPC$$

End of Examination

,

STANDARD INTEGRALS

$\int x^n dx$	$=\frac{1}{n+1}x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$
$\int \frac{1}{x} dx$	$= \ln x, x > 0$
$\int e^{ax} dx$	$=\frac{1}{a}e^{ax}, a \neq 0$
$\int \cos ax dx$	$=\frac{1}{a}\sin ax, a \neq 0$
$\int \sin ax dx$	$=-\frac{1}{a}\cos ax, a \neq 0$
$\int \sec^2 ax dx$	$=\frac{1}{a}\tan ax, a \neq 0$
$\int \sec ax \tan ax dx$	$=\frac{1}{a}\sec ax, a\neq 0$
$\int \frac{1}{a^2 + x^2} dx$	$=\frac{1}{a}\tan^{-1}\frac{x}{a}, a\neq 0$
$\int \frac{1}{\sqrt{a^2 - x^2}} dx$	$=\sin^{-1}\frac{x}{a}, a > 0, -a < x < a$
$\int \frac{1}{\sqrt{x^2 - a^2}} dx$	$= \ln\left(x + \sqrt{x^2 - a^2}\right), x > a > 0$
$\int \frac{1}{\sqrt{x^2 + a^2}} dx$	$= \ln\left(x + \sqrt{x^2 + a^2}\right)$

NOTE : $\ln x = \log_{e} x$, x > 0

--

7

10