

HSC 2010
Software
Design and
Development

Summary Notes

Jamie Kennedy

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 1 -

CONTENTS

Development And Impact Of Software Solutions ... 3

Social and ethical issues ... 3

Rights And Responsibilities Of Software Developers .. 3

Software Piracy And Copyright ... 4

The Software Market ... 6

Significant Social And Ethical Issues ... 7

Application of Software Development Approaches .. 8

Software Development Approaches .. 8

Software Development Cycle ... 15

Defining and understanding the problem ... 15

Defining the problem .. 15

Design Specifications ... 16

Modelling .. 19

Communication Issues, Including: .. 20

Planning and design of software solutions ... 21

Standard Algorithms For Searching And Sorting .. 21

Custom-Designed Logic Used In Software Solutions .. 24

Standard Modules (Library Routines) Used In Software Solutions .. 25

Customisation of existing software solutions .. 25

Documentation Of The Overall Software Solution .. 26

Selection Of Language To Be Used ... 27

Implementation of software solution .. 29

Interface Design In Software Solutions .. 29

Language Syntax Required For Software Solutions .. 29

The Role Of The CPU In The Operation Of Software .. 31

Translation Methods In Software Solutions ... 32

Program Development Techniques In Software Solutions ... 34

Documentation Of A Software Solution ... 38

Hardware Environment To Enable Implementation Of The Software Solution 39

Emerging Technologies ... 39

Testing and evaluation of software solutions .. 41

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 2 -

Testing The Software Solution .. 41

Reporting On The Testing Process .. 43

Maintenance of software solutions .. 45

Modification of code to meet changed requirements .. 45

Documentation Of Changes .. 45

Developing a Solution Package ... 46

Designing and developing a software solution to a complex problem 46

Defining the problem and its solution, including: .. 46

Systems implementation ... 46

The Software Developer’s View of the Hardware ... 48

Representation Of Data Within The Computer .. 48

Electronic Circuits To Perform Standard Software Operations .. 50

Programming Of Hardware Devices ... 53

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 3 -

DEVELOPMENT AND IMPACT OF SOFTWARE SOLUTIONS

SOCIAL AND ETHICAL ISSUES
Software developers and users have rights and responsibilities including:

 The right to good quality software for users

 The right to protection for the software creators

 The Responsibility to develop and use software in a social and legally ethical manner

R I G H T S A N D R E S P O N S I B I L I T I E S O F S O F T W A R E D E V E L O P E R S

Software develops invest time and money into the development of their product. This

investment brings responsibilities to the developer but also gives them rights over the

product they develop.

Electronic material is easy to reproduce and distribute but not easy to develop. Many people

are involved in the software design process and all have rights and responsibilities.

Authorship

Right Responsibility

Protection of their product against theft and
modification without their permission

Acknowledge the authors and sources
used in development, particularly where
there is a development team

Reliability

Right Responsibility

Protection of their product against operating
system problems and other hardware and
programs which may make their product
unusable

Check the product works with the
hardware and operating system they
specify.

 Ensure the product has no runtime
errors when installed and run as directed

Quality

Right Responsibility

Codes to ensure that others develop programs
that follow the same high standard

Use thorough testing procedures and
error checking code

 Meet the user’s expectations as much as
is possible

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 4 -

Response to Problems

Right Responsibility

Not to be harassed with trivial problems that
could have been solved by reading the
documentation

Provide troubleshooting manuals and
online help

 Provide customer support

 Quick response to major or critical
problems

 Make “bug fixes” freely available to
users

Code of Conduct

Right Responsibility

All developers follow the same ethical standard Adhere to the standards set by members
of the professional association to which
they belong

Viruses

Right Responsibility

Protection of the developer’s products by
users by the user of good current AV products

Ensure that they do not distribute
viruses with their products or as part of
their customer contact such as via email

S O F T W A R E P I R A C Y A N D C O P Y R I G H T

Software piracy is the theft of computer programs. This could involve copying the program

or using a product that is installed illegally on a machine without the developer’s permission.

Software piracy results in the increase in the cost of software for those who follow ethical

standards and reduce user options as software developers have reduced incentive to

develop new ideas

Concepts Associated With Piracy and Copyright, Including:

INTELLECTUAL PROPERTY

Intellectual property is personal ownership of the creative ideas that develop from an

individual’s mind or intellect. It could include: patents, trademarks, designs, trade secrets

and confidential business information.

PLAGIARISM

Plagiarism is the theft of the ideas and expressions of another person. Often code in a

project is accumulated from a range of other sources. If the code or design is the work of

any other developer then it must be acknowledged. Writing software using the code

developed by others is plagiarism when the code is now acknowledged as coming from

another source

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 5 -

SHAREWARE

Shareware is software that is distributed for trial use before purchase. Copies can be made

and distributed by users but modifications are not allowed. If the user wishes to continue to

use the software after the trial period, the shareware cost must be paid.

FREEWARE

Freeware can be copied and distributed freely and no license fee needs to be paid however

the product cannot be sold or modified and is covered by copyright.

PUBLIC DOMAIN

Public domain software is programs that are freely available for copying and modification.

The copyright owner has surrendered copyright or the product is no longer covered by

copyright.

OWNERSHIP VERSUS LICENSING

Purchasing a media that contains computer software does not mean that you own the

software. The software distribution medium is your property however you have only been

sold the right to use the software under certain conditions i.e. you have purchased a license

COPYRIGHT LAWS

Copyright is the legal protection of computer programs against illegal copying. The

Copyright Act 1968 and a series of court decisions govern copyright in Australia. The creator

of the program owns copyright; this could include any other people associated with the

development of the program,

REVERSE/BACKWARDS ENGINEERING

Reverse engineering is the process of reading source code and translating it into an

algorithm. The algorithm can then be modified and recoded in the same or another

programming language. Reverse engineering is level when the program is owned by the

developer carrying out the reverse engineering however it is illegal is someone else does.

DECOMPILATION

Decompilation is the process of translating object code (machine code) into code that can

more easily be studied by the programmer. It is legal if the developer owns the program but

is it not if they don’t

LICENCE CONDITIONS

License conditions determine what can be done with software. Many developers include a

compulsory reading and acceptance of the EULA before installing can continue. This leaves

users no excuse for failure to understand the developer’s wishes.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 6 -

NETWORK USE

Software developers have recognised the increasing popularity of networked computers.

Programs are now available for network use. They could be either a) centralised software in

which software is available as a single copy on a central server or b) distributed software

which is available on individual machines. Regardless, each machine on the network or using

the software requires a separate license.

Various National Perspectives to Software Piracy and Copyright Laws

Australia is a signatory to international agreements that recognise international copyright

laws however, although the distribution of cracked or warez programs is illegal in Australia,

it is often not the case in which these countries these programs originate from.

The Relationship between Copyright Laws and Software License Agreements

Software license agreements are contracts that protect the developer’s ownership of the

software they have created. Different license agreements determine the way some software

may be used such as: single use license allows the installation of one copy of the software on

one machine. A multi-use license provides one copy of the software but allows the software

to be installed on a specific number of machines. Network licenses are for networks…

obviously.

T H E S O F T W A R E M A R K E T

Maintaining Market Position

The social and ethical standard of a company is important in this area. The product to be sold

must be able to meet the needs of users. Some factors have will help software developers to

maintain market position include:

 Selling price

 Customer support for the current and earlier version of the product

 Reputation as an ethical developer

 Wide distribution network

 Bug-free software

The Effect on the Marketplace

All software developers want to have an effect on the marketplace. Advertising and other

forms of promotion are often used to gain audience attention and build sales. Packaging can

also be important for shelf presence as well the new move towards the distribution of

content of the internet.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 7 -

S I G N I F I C A N T S O C I A L A N D E T H I C A L I S S U E S

National and International Legal Action Resulting From Software Development

Sega vs. Accolade: Accolade wanted to enter the market to produce games that worked on

Sega hardware. To do so required certain secret code created by Sega. Sega denied access

to the code and Accolade reverse engineered the Sega code. Sega took Accolade to court

but the court ruled that Accolade had the right to reverse engineer as it has not stolen Sega

creative works and only needed the code to be competitive in the marketplace.

Whelan vs. Jaslow: Whelan developed a dental program that took a considerable amount of

time to build and market. A few years later, Jaslow released a very similar product onto the

market. Whelan sued and won because the court ruled that Jaslow had used very similar

code to Whelan.

Public Issues, Including:

THE Y2K PROBLEM

Early computers had limited memory and RAM was expensive. To save memory,

programmers developing operating systems reduced the storage of dates to a two digit

integer reducing storage needs by half. As the year 2000 approached, there was great

concern about what would happen to software that governments, banks and large

businesses depended on. Large amounts of money were spent on changing the dates to a

four digit format.

COMPUTER VIRUSES

A virus is a program that alters the functionality of a computer without the permission of the

user. Viruses are a far larger issue than the Y2K bug due to their persistent and developing

nature. Both software developers and end users have a responsibility to combat viruses.

Install and maintain a reliable AV program that is kept up to date with the latest patches.

RELIANCE ON SOFTWARE

As shown by the Y2K bug, programmers need to consider all aspects of the software they

develop particularly the needs in the future. Software reliability becomes crucial when

society relies heavily on software for many of its basic services

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 8 -

APPLICATION OF SOFTWARE DEVELOPMENT APPROACHES

S O F T W A R E D E V E L O P M E N T A P P R O A C H E S

Approaches Used In Commercial Systems, Including:

Commercial software development falls into two main broad categories.

Off the shelf or retail programs (e.g. Microsoft Office) are sold and distributed to any user

who wishes to use them. Sometimes referred to as COTS and in many cases can be

customised to suit the need or an organisation (e.g. Google Apps for the DET)

Custom programs are commissioned by a particular organisation or individual and are

written specifically to suit the defined needs to those requiring the program.

THE STRUCTURED APPROACH

Advantages Disadvantages

Thoroughly tested Costly

Should meet exact requirements of users Time consuming

Uses a range of experts Requires a range of different skills

The structured (or waterfall) approach to software development follows the software

development cycle. It considers the whole problem and divides it into steps that can be

systematically followed to arrive at a solution. Because of the complexity of this approach,

many people can be involved.

A systems analyst is a person with the skills and knowledge to see the problem as a whole

and divide it into elements. They manage the project and are the first level of

communication between development and management teams. They are often given

control of the whole project.

Define the problem: Understand and define and problem. This is important so you know

what you are solving. It is much easier and cheaper to fix mistakes here than in any other

stage of development.

Planning the solution involves a further understanding of the needs of the users and a choice

of a method or methods to solve the problem. Data needs to be collected to provide the

basis for decisions. Planning involves designing algorithms, planning a UI, data and program

structures needed, scheduling the project, choosing a programming language. As well,

dataflow diagrams, IPO charts, Gantt charts, screen designs and storyboards are all likely

tools that will be used here.

Building the solution requires the full involvement of the team. A large and complex project

is usually broken down into smaller modules; this process is called stepwise refinement. By

breaking parts down into modules, you allow for greater efficiency, easier debugging, less

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 9 -

contamination of the whole project if there is badly written code and you can reuse the

modules that you create.

Checking the solution is a continuous part of the development cycle. It involves using real

data and may include beta testers. This is to make sure that the program meets the needs

and requirements determined in the defining stage. If the project passes management

approval, it can be implemented.

Sometimes it is necessary to make modifications after a program has been implemented so

that it works more effectively. The program may need to be updated to keep abreast of

hardware or software changes or may need to be expanded to cover new tasks.

PROTOTYPING

Advantages Disadvantages

Relatively fast development May be difficult to implement as a fully
working solution

Models a larger project, thus allowing easier
modification and visualisation of the end
product

Prototyping involves building a working model that is then evaluated by users. The model is

then usually modified and evaluated further until it becomes the solution. The prototyping

approach usually only involves a small team of programmers and one or more users. The

prototyping approach is particularly useful in the development of interactive systems and AI

but not as much where complexity and large mathematical calculations are required.

There are two type of prototyping used. Information gathering prototypes are developed to

gain information that can be used in another program. The prototype is never intended to

become the fully working solution. They are often developed in 5GL languages and use

reusable code modules that require only linking to operate.

Evolutionary prototypes become the full working program. The prototype is the first step in

the development of the final product. This prototype becomes the short term solution and

allows the product to be demonstrated before the fully working program is produced.

Prototyping focuses largely on the UI including menus, windows and IO processes. There is a

great amount of user involvement in the development process and there is reduced

amounts of documentation compared to the structured approach however this means that

the system is harder to maintain.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 10 -

RAPID APPLICATIONS DEVELOPMENT

Advantages Disadvantages

(RAD) Fast development Many not meet exact program
requirements

Relatively cheap Many involve copyright and intellectual
property of others

Uses considerable amount of existing reusable
code

The rapid applications software development is any method of software design that uses

tools to quickly generate a program for a user. It uses existing modules and may reuse code,

CASE tools and templates. The developer is involved directly with the user.

END USER DEVELOPMENT

Advantages Disadvantages

(EUD) Should meet exact user requirements Limited to simply projects and limitations
of application programs

Quick and cheap

End user development is where the user adapts existing software tools to suit their needs or

to obtain a solution to a problem. EUD is very informal and used for very small solutions. It is

usually created in a 4GL programming environment such as in a spread sheet or database.

COMBINATIONS OF ANY OF THE ABOVE

Using combinations of any of the four approaches can make it easier to develop a program.

If different parts require different approaches then using the right approach for each part

will make the process more effective.

Methods of Implementation

DIRECT CUT OVER

Description Diagram Advantages Disadvantages

The new
program
immediately
replaces the old
program

 Reduced implementation
costs compared to other
methods

Data transfer from old
to new has to be done
very quickly

Less pressure on users as
only one program is in
place

Testing of new program
in operation leaves no
fall back to old program
if there are problems

 User stress as training

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 11 -

needs to be done
before new program is
in place while old
program is still
operating

PARALLEL

Description Diagram Advantages Disadvantages

The old and the
new work
together over a
period of time

 Two programs can be
compared and any
problems can be fixed to
take account of
differences

User stress as both old
and new programs have
to be operated for
conversion time

Testing and fixing of
problems in new
program is simpler as old
program is still available
for use in an emergency

Confusion between
programs if close
records are not kept

 If there are large
changes in operating
procedures between
the old and new
program there can be
problems for users

 More expensive than
other methods due to
dual costs

PHASED

Description Diagram Advantages Disadvantages

One or more
tasks of the new
program are
gradually
implemented
until the new
program takes
over all tasks of
the old program

 Each task can be
individually tested as it is
implemented

Difficult for users to
separate the old and
the new programs and
operate different tasks
in each system

Training users is simpler
as only one new task has
to be learnt

Longer time frame
leads to high
implementation costs

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 12 -

PILOT

Description Diagram Advantages Disadvantages

One section of
the organisation
use the new
program and all
other sections
continue with
the old program
until a decision is
made to put the
new program
into place across
the whole
system

 Risk is confined to one
section of an
organisation

Large organisations
usually use this method
particularly multiple
sites doing the same
thing such as one bank
amount a series of
branches

Testing and fixing of
problems in the new
program is simpler as the
old program is still
available for use in other
parts of the organisation

Current Trends in Software Development, For Example:

OUTSOURCING

Outsourcing is the process where a company needing software services hires an outside

organisation to handle all or part of these services. This could include development,

implementation, and maintenance. Outsourcing is an effective use of scare technological

assets and costs savings due to economies of scale however some outsourcing companies

many not understand the ethos of the company employing it and the organisation may feel

as if it is losing control of the system.

POPULAR APPROACHES

Software of the popular approaches to software development at the moment includes:

 Increasing facilities for EUD

 The availability of editors to allow non-programmers to generate simple programs

such as WYSIWYG editors.

 Greater distribution of code libraries

 Authoring languages that guide the developer through the steps of creating

programs including markup languages

 Increasing use of multimedia in programs

POPULAR LANGUAGES

4GL and 5GL languages are increasing becoming human centred to allow non-programmers

to develop customised software. SQL, is very powerful language but is limited to the domain

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 13 -

of databases. It can be used to someone who is relatively inexperienced to create powerful

database structures

Most of the popular languages have the same basic capabilities such as syntax, constants,

variables and operators.

EMPLOYMENT TRENDS

Technology has been a growth area in employment over the last decade and there are still

large numbers of jobs in the field despite a recent slowdown. There are increasingly high

educational requirements for those entering the industry.

NETWORKED SOFTWARE

With the increasing trend towards networks in organisational environments, there has come

a greater demand for networked software. This comes in two forms, network OSes

(Windows Server 2008, Snow Leopard Server, Ubuntu Server Edition) and network

applications (MYOB, databases).

CUSTOMISED OFF-THE-SHELF PACKAGES

COTS are readily available today and are often released as suites of programs that integrate

together do perform a wide range of tasks such as Microsoft Office, Adobe Creative Suite.

These programs can reduce costs for the end user and are more reliable than custom

software as they have been tested on a wider scale. They are modular and more easily

updated and modified to suit the user’s needs.

Use of Case Tools and Their Application in Large Systems Development

Software development teams often use a CASE approach to their works. CASE tools allow

the software developer to track bugs, data model, generate documentation, reverse

engineer and simulation tools. CASE tools help the maintenance team to interact with the

development team

SOFTWARE VERSIONS

When developing a full product, there will be many versions such as for different hardware,

operating systems. The number of versions leads to the need for version control and CASE

tools can be used to take over this process. CASE tools allows for strict control over the

versioning process.

DATA DICTIONARY

CASE tools can collect and track data types through multiple modules and develop concise

descriptions of each data type in a program. This can be a major time advantage.

TEST DATA

CASE tools can be used to generate test data for complex programs. This can avoid time

consuming manual testing or the generation of large test data tables by a slower input

method

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 14 -

PRODUCTION OF DOCUMENTATION

There are a number of CASE tools available to help the documentation process with facilities

such as word processors and drawing tools. Others can produce Gantt charts, calendars and

other project management tools.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 15 -

SOFTWARE DEVELOPMENT CYCLE

DEFINING AND UNDERSTANDING THE PROBLEM

D E F I N I N G T H E P R O B L E M

The programmer must have a complete understanding of the problem before developing a

solution. This will establish what needs to be done.

Identifying the Problem

This involves determining the requirements of the program to be developed. Includes:

NEEDS

It is the programmer’s job to determine how to solve a problem or meet the need of a user.

Requirements definition: clear statement of the requirements of the system being

developed.

OBJECTIVES

The short and long term aims and plans for the software being developed.

BOUNDARIES

The boundary is the limit to a system such as the scope of a project. It is also important to

consider any constraints

Determining the Feasibility of the Solution

A feasibility study is carried out usually after requirement definition to determine whether

the proposed solution is practical.

IS IT WORTH SOLVING?

An investigation into the problem will allow the systems analyst (or developer) to decide if

the problem can be solved or if an alternative route can be taken.

TECHNICAL

For example: what software and hardware is currently being used and if this a solution can

be built around it or if new hardware/software needs to be bought (then consider economic)

ECONOMIC/BUDGETARY

Is the solution to the problem affordable? A cost/benefit analysis of the solution will be used

to determine initial and recurring costs as well as benefits to the consumer.

SCHEDULING

Is there enough time to allow the solution to be developed? Planning tools such as Gantt

charts can be used and the developer must be able to meet these deadlines for the solution

to be achievable.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 16 -

OPERATIONAL

Will the solution be usable by the target consumer? The future user of the software must be

able to use and operate the program. If training costs are required then this should be

factored into the cost (see economic)

LEGAL

Does the software comply to legal standards? For example, does it calculate GST correctly?

Does it acknowledge other author’s if their code is used?

SOCIAL/ETHICAL CONSIDERATIONS

The software must be developed in a socially responsible manner and not be socially biased.

It should be widely accessible (but this may impact on economic and technical)

POSSIBLE ALTERNATIVES

If the solution is determined to not be feasible, then the developer may choose to explore

alternative solutions

D E S I G N S P E C I F I C A T I O N S

The Developer’s Perspective in Consideration Of:

DATA TYPES

Simple data types include:

• Integers: signed whole numbers (+32, -98)

• Real/Floating Point: Numbers with decimals or exponents

• Character: any character on the keyboard

• Boolean: only two possible values (T/F)

Structured data type:

• String: composed of multiple characters which can be referred to by a single name

and manipulated as a group. Also, can be seen as an array of characters.

• One Dimensional Array: A number of data items of the same type referred to by the

same name. These items can be accessed by their “index” number. An array can also

be considered a list.

• Multidimensional Array: Two or more separate arrays where elements refer to similar

data. An example of this could be a spread sheet or grid, this will have two index

positions. [Similar to dictionary in python]

• Single Record: A collection of different data types that are related. Consists of a

number of fields, each accessed by name. Differ to arrays in that they can contain

different data types.

• Array of Records: Single records combined together into an array and can be

accessed with an index (similar to a database)

• Files: A data structure that allows data to be stored externally and may consist of any

other data type except a file

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 17 -

ALGORITHMS

An algorithm is a series of instructions or steps that will result in the solution to a specific

problem. It can be represented in pseudocode or in flowchart form.

Binary Selection:

IF the signal is green THEN

 proceed through the intersection

ELSE

 stop the vehicle

ENDIF

Multi-way selection:

CASEWHERE signal is

 red : stop the vehicle

 amber : stop the vehicle

 green : proceed through the intersection

 OTHERWISE : proceed with caution

ENDCASE

Pre-test (guarded) loop:

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 18 -

WHILE the train is still moving

 keep wholly within the car

END WHILE

Post-test (unguarded) loop

REPEAT

 beat the egg whites

UNTIL fluffy

VARIABLES

A variable is a pointer to an area in memory that is being used by a program to store data.

The contents are not fixed and may vary.

The User’s Perspective

It is important for software developers not only to analyse the problem but to consult with

the user to ensure the task they are solving is clearly defined.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 19 -

M O D E L L I N G

Representing a System Using Diagrams, Including:

System modelling tools allow the system designer to communicate and record the system so

that users and other developers can understand the system. There are three attributes that

needs to be represented. These are the function, the logic and interfaces.

INPUT PROCESS OUTPUT (IPO) DIAGRAMS

An IPO chart describes the system in terms of its input data, its output data and the

processes that are performed on the inputs to transfer them into the outputs.

STORY BOARDS

Storyboards give a general overview of a program. They are used to document the screens

used in a system and the flow between them. They are suited to applications with a large

number of screens of information which link to other screens. Storyboards can also be useful

in planning the flow of information between modules.

CONTEXT DIAGRAMS

Context diagrams are used to represent entire information systems. This system is shown as

a single process along with the input and output (external entities) to the system.

DATA FLOW DIAGRAMS

Data flow diagrams represent the flow of data into and out of the system in terms of the

processes used. A data flow diagram provides more detail at a lower level than a context

diagram. Contains processes, data flows, external entities and data stores.

SYSTEMS FLOWCHARTS

System flow charts are a diagrammatic way of representing both the flow of data and logic

through an information system.

SCREEN DESIGNS

The screen is the first point of contact between a user and a program. Sample screens may

be developed to provide the customer with a clear idea of the final interface of the program.

CONSIDERATION OF USE OF A LIMITED PROTOTYPE

A prototype is a hands-on model of the computer system that concentrates on the design of

input and output screens. Prototypes are often concerned with the final design and can give

users a good indication of what the final program will look/feel like.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 20 -

C O M M U N I C A T I O N I S S U E S , I N C L U D I N G :

The Need to Empower the User

It is important to include the user in the software development process.

The Need to Acknowledge the User’s Perspective

Software developers and users view the solution from different perspectives and it is

important to understand the user’s views. Users want operational software that does what

they want and it is up to the developers to provide this.

Enabling and Accepting Feedback

The developer must communicate regularly with the user to ensure that the solution will

meet the needs of the user. The cost to fix a program increases exponentially as the system

is developed and it is much cheaper to fix any errors earlier on than later.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 21 -

PLANNING AND DESIGN OF SOFTWARE SOLUTIONS

S T A N D A R D A L G O R I T H M S F O R S E A R C H I N G A N D S O R T I N G

Standard Logic Used In Software Solutions, Namely:

FINDING MAXIMUM AND MINIMUM VALUES IN ARRAYS

Max and min values can be found by moving through each array element in a sequential

manner and comparing the current element with the value currently thought to be the max

or min. If the new value is a max or min, it now becomes the one that others are compared

against

PROCESSING STRINGS (EXTRACTING, INSERTING, DELETING)

A string is an array of characters and this means that they can be manipulated. Strings can be

joined together (concatenated), characters to be inserted and deleted, portions of strings to

be extracted and for the length to be calculated

FILE PROCESSING, INCLUDING SENTINEL VALUE

A file is a collection of data stored on a secondary storage device. They must be opened and

closed to be read and written to. Files often include a sentinel value which is a special symbol

that terminates the file. This symbol is usually an EOF (End of File) symbol.

LINEAR SEARCH

A linear search is used to search through a set of data sequentially. Each value is compared

to the target and if the value is not the same, the next value is compared until the target has

been found or the end of the array has been reached.

BEGIN MAINPROGRAM

 Set Max to TheArray[1]

 Set Min to TheArray[1]

 Index = 2

 WHILE index < 100 THEN

 IF TheArray[Index] > Max THEN

 Max = TheArray[Index]

 END IF

 IF TheArray[Index] < Min THEN

 Min = TheArray[Index]

 END IF

 Increment Index

 END WHILE

 Print “The highest number found was:” Max

 Print “The lowest number found was:” Min

END MAINPROGRAM

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 22 -

BINARY SEARCH

A binary search is used to search data that has been sorted. It divides the data into two parts

and determines which part the data lies in with the other part discarded. The remained is

split in two and the process is repeated again until the target is found or there are no more

items left to divide.

BEGIN MAINPROGRAM

 Set Found to False

 Ask user to enter target

 Next = 1

 Last = 100

 WHILE Next <= Last AND Found = False

 IF List[Next] = Target THEN

 Found = True

 FoundPosition = Next

 END IF

 Increment Next

 END WHILE

 IF Found = True THEN

 Print “Target was found at position” FoundPosition

 ELSE

 Print “Target was not found”

 END IF

END MAINPROGRAM

BEGIN MAINPROGRAM

 Set Lower to 1

 Set Upper to 12

 Set Found to False

 Get the Target value

 REPEAT

 Set middle value to integer of (Upper + Lower) / 2

 IF Target = NumArray[Middle] THEN

 Set Found to True

 Set FoundPosition to Middle

 ELSE

 IF Target < NumArray[Middle] THEN

 Set Upper to Middle – 1

 ELSE

 Set Upper to Middle + 1

 END IF

 END IF

 UNTIL Found OR Lower > Upper

IF Found THEN print “found” ELSE print “not found” END MAINPROGRAM

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 23 -

BUBBLE SORT

INSERTION SORT

SELECTION SORT

BEGIN MAINPROGRAM

 Set End to ArrayLength

 WHILE End > 1

 Set Current to 1

 WHILE Current < End

 IF TheArray[Current] > TheArray[Current + 1] THEN

 Swap(Current, Current + 1)

 END IF

 Increment count

 END WHILE

 Decrement count

END MAINPROGRAM

BEGIN SUBPROGRAM Swap(Position1, Position2)

 Temp = TheArray[Position1]

 TheArray[Position1] = TheArray[Position2]

 TheArray[Position2] = Temp

END SUBPROGRAM Swap

BEGIN MAINPROGRAM

 Set First to 1

 Set Last to ArrayLength

 Set PositionOfNext to Last

 WHILE PositionOfNext >= First

 Next = TheArray[PositionOfNext]

 Current = PositionOfNext

 WHILE (Current < Last) AND (Next > TheArray[Current + 1])

 {Shuffle sorted part along}

 Increment Count

 TheArray[Current – 1] = TheArray[Current]

 ENDWHILE

 TheArray[Current] = Next

 Decrement PositionOfNext

 ENDWHILE

END MAINPROGRAM

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 24 -

C U S T O M -D E S I G N E D L O G I C U S E D I N S O F T W A R E S O L U T I O N S

Requirements To Generate These Include:

IDENTIFICATION OF INPUTS, PROCESSES AND OUTPUTS

Here the software developer must fully describe the data and its format. It is helpful to

develop and IPO diagram to show the relationship between inputs, processes and outputs

REPRESENTATION AS AN ALGORITHM

Writing an algorithm helps the programmer to understand the logic of the problem making it

easy to convert it straight into code

DEFINITION OF REQUIRED DATA STRUCTURES

Data structures are a set of rules for storing and manipulating data. Developing a data

dictionary enables the programmer to determine the composition of data that is to be used

in the program.

USE OF DATA STRUCTURES, INCLUDING MULTI-DIMENSIONAL ARRAYS, ARRAYS OF RECORDS,
FILES (SEQUENTIAL AND RELATIVE/RANDOM)

The choice of data structure is important as it will have a significant impact on the algorithm

used. There is often a trade-off between complexity of the algorithm and the data structure

used.

BEGIN MAINPROGRAM

 Set EndUnsorted to ArrayLength

 WHILE EndUnsorted > 1

 Set Current to 1

 Set Largest to TheArray[Current]

 Set PositionOfLargest to Current

 WHILE Current < EndUnsorted

 Increment Count

 IF TheArray[Current] > Largest THEN

 Set Largest to TheArray[Current]

 Set PositionOfLargest to Current

 END IF

 END WHILE

 Swap (PositionOfLargest, EndUnsorted)

 Decrement EndUnsorted

 END WHILE

END MAINPROGRAM

BEGIN SUBPROGRAM Swap(Position1, Position2)

 Temp = TheArray[Position1]

 TheArray[Position1] = TheArray[Position2]

 TheArray[Position2] = Temp

END SUBPROGRAM Swap

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 25 -

USE OF RANDOM NUMBERS

Random numbers are often used to allow access to unpredictable data.

THOROUGH TESTING

The amount of time spent on each of the other phases will reduce the amount of time that is

required to test. A well designed solution will require little testing time and produce an

easier to implement program. Algorithms should be desk checked before use.

S T A N D A R D M O D U L E S (L I B R A R Y R O U T I N E S) U S E D I N S O F T W A R E S O L U T I O N S

Most programming languages have library routines that can be accessed for use in a

program such as the “print” statement in Python.

Requirements For Generating Or Subsequent Use Include:

Structured programming results in modular programs, each module carrying our specific

tasks

IDENTIFICATION OF APPROPRIATE MODULES

Programmers will only use modules or libraries that are necessary to perform the task

required. It would be a waste of resources to include other redundant libraries that are not

accessed by the program.

CONSIDERATION OF LOCAL AND GLOBAL VARIABLES

Local variables are those which can only be accessed from within that particular subprogram

and will not be recognised outside of it.

Global variables are those that can be used from anywhere within the program.

APPROPRIATE USE OF PARAMETERS (ARGUMENTS)

A subprogram often requires arguments of parameters to be included in the subprogram call.

Parameters are data items that can be passed from one part of the program to another

where the values can be used.

APPROPRIATE TESTING USING DRIVERS

A driver is a special instance of a stub. It is a temporary section of code that is created to test

an individual procedure or module by calling it up and executing it.

THOROUGH DOCUMENTATION

Any modules of code developed should be thoroughly documented and should include

parameters, inputs, processes and output. This will allow programmers to reuse modules of

code and understand the processes being carried out in the future.

C U S T O M I S A T I O N O F E X I S T I N G S O F T W A R E S O L U T I O N S

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 26 -

It is much easier to develop a new program from a known working program instead of

starting from scratch.

Identification of Relevant Products

Many languages are purchased with sample programs and some programming languages

include portions of code that can be used by programmers to develop their own solutions

Customisation

Customising software involves determining the portions of the program which are relevant

to the solution that you are developing.

Cost Effectiveness

Customising software solutions often results in faster development time and lower cost but

if the original program performs insufficiently than in the long run, the newer program may

end up costing more.

D O C U M E N T A T I O N O F T H E O V E R A L L S O F T W A R E S O L U T I O N

Tools For Representing A Complex Software Solution Include:

ALGORITHM DESCRIPTIONS

Algorithms provide a detailed description of the logic that is carried out in a program.

SYSTEM FLOWCHARTS

System flowcharts are a graphical representation of the logic of a computer system. They

demonstrate the source and destination of data which is used by the system.

STRUCTURE DIAGRAMS

Structure diagrams are a method of representing the elements of a system in a hierarchical

form. Modules are represented by a box. They are suited to top-down methods of solving

the problem.

Rectangles are used to represent tasks with lines used to show the connections between

tasks

DATA FLOW DIAGRAMS

Data flow diagrams are useful for tracking the movement of data through a system. They

show graphically the processing which occurs in a system and indicate where data is stored

A flag

Data movement between tasks

A decision

Repetition

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 27 -

DATA DICTIONARY

Data dictionaries help the programmer and users of the system to understand the data that

will be used in a particular program

S E L E C T I O N O F L A N G U A G E T O B E U S E D

Event-Driven Software

Event-driven software is executed in an order dependent on the events detected.

DRIVEN BY THE USER

The user determines the sequence in which the programming tasks are carries out by the

processor. Events may occur in any order and event driven software typically involves the

use of menus and buttons.

PROGRAM LOGIC

During program execution, the computer’s operating system polls the hardware to generate

a stream of events. An event driven program will act upon the events detecting during this

polling processes

Sequential Approach

A sequential program will execute instructions in a linear fashion one after the other until

the end of the program is reached.

DEFINED BY THE PROGRAMMER

Sequential programs must follow a predetermined order of events executing the first

statement and subsequent statements until the program is complete. While the program is

executing a statement, it cannot react to anything else. Each task is carried out in the order

as specified by the programmer.

Relevant Language Features

The programmer must carefully consider the nature of the problem before choosing a

programming language. One particular language may be more suited to a problem than

another (such as functional vs object oriented)

Hardware Ramifications

The language chosen depends on the hardware architecture. Certain programs may be more

suited to different hardware types. As well, the speed of the hardware the required

execution time would determine the final language used. For example, if execution time was

important, a fast language such as C would be used

Graphical User Interface (GUI)

Graphical User Interfaces are usually made up of Windows, Icons, Menus and Pointers

(WIMPs) and they display information on the screen in the way it will be printed (WYSIWYG)

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 28 -

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 29 -

IMPLEMENTATION OF SOFTWARE SOLUTION

I N T E R F A C E D E S I G N I N S O F T W A R E S O L U T I O N S

The Design of Individual Screens, Including:

As the screen is the first point of the contact between the user and the software, it is

important that the interface used does not frustrate the user, prevent the efficient entry of

data and lead to physical fatigue.

IDENTIFICATION OF DATA REQUIRED

A well laid out screen should focus the reader’s attention on the important areas and main

interest. Screens should be simple with enough white space around them. There should be

variety on the screen as well as consistency in the overall program. Graphic elements are also

important. Legibility refers to the ease with which a screen can be read, a program should be

legible. The positioning of text on the screen should be taken into account as to not

overwhelm the user. As well, the type of font (serif, sans serif), alignment and justification,

upper and lower case, colour of text, size and background should also be considered.

CURRENT POPULAR APPROACHES

The most popular approach today is the use of the GUI and WIMP interface. This includes

other navigational elements such as scroll bars, hypertext (links), radio buttons and dialogue

boxes.

DESIGN OF HELP SCREENS

Help screens and error messages should be non-threatening. It is important that the user not

be put down or turned off by the language of the program. Error messages should be helpful

and provide instruction on what to do. Error messages should be consistent throughout.

User prompts should be specific and appropriate.

AUDIENCE IDENTIFICATION

The language that the program uses to communicate with the intended audience should be

specifically suited to that target audience. For example the language and layout would differ

greatly between a program targeted at children compared to an engineer or a visually

impaired person.

CONSISTENCY IN APPROACH

For ease of use and to aid in navigation, it is important that the programmer maintains

consistency in screen design throughout including consistent placement of repeated

elements (such as menus), user interface (such as logical shortcuts) and fonts (same heading

font).

L A N G U A G E S Y N T A X R E Q U I R E D F O R S O F T W A R E S O L U T I O N S

The syntax of the language refers to the rules that determine whether a statement is legal

and so can be executed.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 30 -

Use of BNF, EBNF and Railroad Diagrams to Describe the Syntax of New Statements in
the Chosen Language

The use of a metalanguage such as BNF to describe the syntax of a language allows users to

interpret definitions and check the legality of constructions.

BNF:

Repetition is described through recursion. ::= stands for “is defined as” and non-terminal

elements are enclosed with <> brackets.

EBNF:

Symbols similar to BNF with the addition of {} for repetition, [] encloses optional elements, ()

groups elements together.

Railroad diagrams are also known as syntax diagrams or structure diagrams. They are a

method of graphically representing the syntax by tracing a one-way path or railroad track

from left to right. Branching it only permitted in the direction of motion. Terminals are

represented by circles or rounded rectangles. Rectangles represent previously defined

elements and repetition is shown by a looping structure.

Commands Incorporating the Definition and Use Of:

MULTI-DIMENSIONAL ARRAYS

ARRAYS OF RECORDS

FILES (SEQUENTIAL AND RELATIVE/RANDOM)

Files allow for data to be stored on secondary storage devices. Traditionally stored and

accessed using sequential techniques (accessed from start to finish such as a VHS).

Random (direct) access uses indexes to identify separate items of data (such as a dictionary

in Python – hashtables) which means that it can be accessed directly and quickly.

RANDOM NUMBER GENERATORS

Random numbers are generated by picking a starting number (seed) and performing a

variety of mathematical operations on it. The seed is often the current time to avoid the

same random numbers being generated each time.

word ::= <letter><word>|<letter>

letter ::= a|b|c|d|e|…|y|z

word = <letter>{<letter>}

letter = a|b|c|d|e|…|y|z

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 31 -

T H E R O L E O F T H E CPU I N T H E O P E R A T I O N O F S O F T W A R E

All modern computers are based on the ideas of input, output, memory and a central

controller.

Machine Code and CPU Operation

Computers are run by instructions stored in binary form called machine code. Instructions

are fetched one at a time from the computer’s memory (RAM) and interpreted by the

control unit. Arithmetic and logic operations are performed by the ALU. Machine language is

the only language that the computer can understand without translation.

INSTRUCTION FORMAT

An instruction is a command given to the CPU by a program. The CPU uses a fetch-execute

cycle. Op codes are the machine language command for a single operation of the CPU such

as ADD or STORE. The CPU uses these to move numbers from a memory location to the

accumulator for example. Each memory location in RAM has an address and a storage

location that contains data or instructions.

USE OF REGISTERS AND ACCUMULATORS

A register is a temporary storage location that is able to hold one instruction. Everything

must pass through the buffer register.

The accumulator is a specific register in the CPU. It stores data that is about to be computed

or the results of a computation. Data must be moved to the accumulator before a

mathematical or logical operation can be performed. Data is then passed back to the

accumulator before being stored.

USE OF PROGRAM COUNTER AND FETCH-EXECUTE CYCLE

The program counter is a register that is part of the computer’s CPU. The program stores the

address of the next instruction to be executed. The value in the program counter is

automatically incremented when an instruction is executed.

Control

Storage

Output

Processing

Input

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 32 -

The fetch-execute cycle is performed continually by the CPU.

ADDRESSES OF CALLED ROUTINES

The address of a command to be executed is stored with the op code in RAM,

LINKING, INCLUDING USE OF DLL’S

Linking allows for machine code to be combined with another machine code program. The

use of a linker allows only the modules being used at any one time to be loaded into RAM.

This saves on resources.

A DLL is a collection of programs in machine code which can be accessed by other programs

to perform specific tasks. DLL files are often called device drivers because they control a

specific device.

T R A N S L A T I O N M E T H O D S I N S O F T W A R E S O L U T I O N S

Computers can only execute code that is in machine language. A translator converts

statements from one programming language to the format of another (eg: machine code).

This has many advantages are certain complex structures are only available in high level

languages and is far more human readable than machine language.

Different Methods Include:

COMPILATION

Compiling takes the whole source of a program and translates it producing a complete

object program that can be executed at a later stage. Once compiled, it is much more

difficult to change the program which can help protect against plagiarism and malicious

damage. The compilation process translates the program as whole and removes

The processor
reads an

instruction
from memory

(fetch)

Decodes the
instruction to

determine
action to be

taken

Action then
executed in

the ALU

Result of this
action stored

in RAM

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 33 -

redundancies resulting in more efficient code. The disadvantage is that compiling can take

some time and is testing is required at each stage during the development process than this

may waste time. As well, a program will not compile is an error has been found.

INCREMENTAL COMPILATION

An incremental compiler compiles each line of the source code as it is entered and adds it to

the object file. This has the advantage of an interpreter in error checking and the speed of a

compiler in execution.

INTERPRETATION

When the program is translated line by line is it called interpreting. Interpretation ensures

that there is no memory or resource conflicts and allows syntax errors to be identified

immediately. Examples include the Python Interactive Interpreter, but this method is the

slowest.

The Translation Process

The translation process involves four stages:

1. Lexical Analysis: uses the delimiters (symbols such as colons or CR that indicates the

end of a syntactic unit) in the source code to break the program into single

commands. Each character in the line is scanned and redundant characters removed.

Different types of elements are labelled with a token. If there is an error in the syntax

then translation cannot continue.

2. Syntactic Analysis: examines and tests the validity of the relationships between the

elements. It is an examination of whether the identified elements of a statement are

combined together in a way that is legal according to the syntax of the language.

Advantages and Disadvantages of Each Method

 Advantages Disadvantages

Compiling Fast execution of object code

Code is transportable

Security of code

Allows optimisation of object code

Permits sharing of resources and

reduces redundancy by using run-time

libraries

Modification of the problem means it

has to be completely recompiled

Compiling stops when a syntax error is

encountered

Object code duplicates space

Interpreting Simple, rapid production of object

code

Immediate detection of syntax errors

No stored object code, so no

duplication of resources

Run-time errors can be detected and

Slow execution speed

Poor efficiency – the same lines will be

reinterpreted each pass of a repetition

No reusable object code is produced

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 34 -

corrected quickly

Interactive programming

P R O G R A M D E V E L O P M E N T T E C H N I Q U E S I N S O F T W A R E S O L U T I O N S

Structured Approach to a Complex Solution, Including:

The structured approach to software development involves planning a solution by stepwise

refinement – that is solving an overall problem by dividing it into smaller, more manageable

parts. The use of modules is the preferred method of achieving a solution. There are two

methods that use modules: top down design and bottom up design.

In top down design, the problem is refined into small sub-problems, which are then broken

down again into smaller problems. The program that controls these modules Is written and

tested first. Code that controls the next level of modules is then created and tested until

code for the lowest level is written.

In bottom up design, the problem is solved starting with the modules at the lowest levels.

Each module is written as a self-contained unit, which can be run and tested independently.

The modules are then put together to form the end program. This approach is usually suited

to OOP or event driven programming.

ONE LOGICAL TASK PER SUBROUTINE

When testing a program, it is usual to test the programming code of these modules

independently rather than delay testing until the whole program is complete. However,

while a module may be a part of the solution, in most cases it is not possible to run the

module as a stand-alone program. A driver is a temporary section of code that is created to

test an individual procedure or module by calling it up and executing it.

STUBS

The use of a stub is particularly important in top-down program design and testing, as a stub

allows a section of code to be tested even though it relies on other modules of the program.

A stub is effectively a temporary subprogram which usually contains very little code such as

displaying a message to indicate that a certain program has been successfully called or to

temporarily assign variables.

FLAGS

A flag is a marker placed in the code to signal a change in status. They are usually Boolean

variables that record whether a certain condition has been met and are very useful

debugging tools.

ISOLATION OF ERRORS

There are other methods that can be used to determine where errors occur in a program

such as program traces, breakpoints and commenting out sections of code.

DEBUGGING OUTPUT STATEMENTS

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 35 -

Debugging output statements are temporary lines of code added to a program or module to

display the value of variables at strategic places in the program. This allows the programmer

to compare actual values with expected values. Similar to stubs and flags.

ELEGANCE OF SOLUTION

An elegant solution is one that is efficient in its use of resources and data structures such as

using a loop to iterate over lists instead of manually hard coding in each input. This also

allows for much easier changes if the specifications in the future change.

WRITING FOR SUBSEQUENT MAINTENANCE

A well-structured solution with clear documentation makes the task of maintenance a much

simpler process than trying to understand a poorly documented and unstructured program.

The Process of Detecting and Correcting Errors, Including:

SYNTAX ERRORS

A syntax error is an error detected by the compiler when it is unable to match items in the

source code to syntactic entries in the language. The syntax analyser takes the lexical units

(tokens or words) from the lexical analysis stage and from the constructs hierarchical

structures called parse trees.

LOGIC ERRORS

A logical error means that the program will perform an incorrect action or give the wrong

output. They are usually caused by an error in the design of the program so that although

the program will run, it will produce an incorrect output. Logic errors are detected through

careful checking use selected test data (desk check etc).

PEER CHECKING

Peer checking is a process in which programmers not involved with the original design are

asked to check the logic of an algorithm or program.

DESK CHECKING

In desk checking, test data is used to compare the actual result with expected results. The

programmer uses a structured walkthrough using pen and paper to step through the code

to find where the error has occurred.

USE OF EXPECTED OUTPUT

In choosing the test data, the following needs to be considered:

 Should test a range of values

 Values between expected limits (ie: middle values)

 Values on the limit of expected values (ie: boundary values)

 Non-valid values.

RUN TIME ERRORS, INCLUDING:

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 36 -

Run-time testing involves the use of live data – real that is supplied by the client. Run-time

errors are problems that appear when a translated program is executed.

ARITHMETIC OVERFLOW

Overflow errors involves the incorrect use of data types and data structures. Arithmetic

overflow errors occur when the computer is unable to store or process the number of digits

being manipulated. Floating point overflow may occur when performing calculations using

large numbers. The result may be either out of the range of values able to be stored or the

precision may be inaccurate. Range errors occur when a value is too large to be stored using

the number of bits allocated.

DIVISION BY ZERO

Errors may also be caused by performing an undefined arithmetic operation such as dividing

a number by 0 (which is arithmetically impossible!)

ACCESSING INAPPROPRIATE MEMORY LOCATIONS

Errors will also occur if the program attempts to access an inappropriate or privileged

memory location.

The Use of Software Debugging Tools, Including:

Debugging is the process of removing bugs from your program. Translation will detect

syntax errors however other errors need to be removed using a systematic approach. This

process requires the use of good test data and desk checking. Many programming languages

allow the setting of break points and the tracing of variables, otherwise, the method of using

stubs, flags and debugging statements can also be used.

USE OF BREAKPOINTS

Setting breakpoints is the simple technique of stopping the program part way through the

execution. This allows the programmer to examine the contents of variables or to only run

certain portions of code.

RESETTING VARIABLE CONTENTS

The value stored in a variable can be changed over the duration of the execution of the

program. It is helpful to change and print the contents of variables to determine if in fact

that a certain portion of code is being executed.

PROGRAM TRACES

When tracing a program, the actual line of the program that is being run will be displayed

instead of this output. The values of variables can be seen which the program is running. This

is particularly useful when running nested loops or complicated selections.

SINGLE LINE STEPPING

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 37 -

Single line stepping allows the programmer to step through the code, one line at a time to

ensure that each line of the source code is being executed correctly. The values of variables

can be traced as well as the flow of control throughout the program.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 38 -

D O C U M E N T A T I O N O F A S O F T W A R E S O L U T I O N

Forms of Documentation, Including:

PROCESS DIARY

Design documentation specifies the development process and the specifications for the

design of the software. A process diary is used to document program development.

Programmers and system developers monitor the progress of a new system and document

changes in the system as they occur by using the process diary. Also known as a logbook.

USER DOCUMENTATION

The main volume of documentation is use documentation. This should be clear and non-

technical. It includes such documentation as: installation guides, troubleshooting guides,

online help, user manuals and reference manuals.

SELF-DOCUMENTATION OF THE CODE

Intrinsic documentation refers to the use of a self-explanatory, easy to follow coding style.

This includes such facets as clarity of layout using indentation to show repetition and

selection structures, clear declaration of variables, use of meaningful identifier names that

are self-explanatory.

TECHNICAL DOCUMENTATION, INCLUDING SOURCE CODE, ALGORITHMS, DATA DICTIONARY
AND SYSTEMS DOCUMENTATION

Source code is the programming code that makes up a particular program. It is sometimes

helpful to print out source code to make it easier to read. This allows programmers a greater

depth of understanding as to the how the program works and how to solve problems.

Algorithms are primarily used during program design to provide a clear description of the

steps carried out to solve the problem. They allow maintenance programmers to determine

the structure of the program.

Data dictionaries describe each data item as fully as possible. It usually includes the data

names, length, data type, description and an example and/or default value.

Systems documentation should provide a description of the operation of the program

including the use of subprograms and any special features of the code. It should include

documentation on how to configure the hardware and software required.

DOCUMENTATION FOR SUBSEQUENT MAINTENANCE OF THE CODE

It is important to document a program in a way that will make it easy to modify if a bug is

found of an improvement is required. Internal documentation is documentation that forms

part of the programming code. Intrinsic documentation and comments in the code are

examples of internal documentation. Changes made during maintenance should be

documented for future reference.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 39 -

Use of Application Software to Assist In the Documentation Process

Application software is used to structure and clearly present documentation. Application

software ranges from simple word processors with a template to CASE tools that will

automatically generate portions of the documentation

USE OF CASE TOOLS

CASE tools provide programmers with a range of tools to aid in the development process

including documentation. CASE tools can sometimes automatically generate some forms of

documentation such as data dictionaries or provide a structured way of entering data.

H A R D W A R E E N V I R O N M E N T T O E N A B L E I M P L E M E N T A T I O N O F T H E S O F T W A R E

S O L U T I O N

Hardware Requirements

During development, it is important to determine the hardware specifications of the

computers that will be used to run the program such as Pentium 4+, Intel Core2 Duo, ARM

Cortex.

MINIMUM CONFIGURATION

Commercial software products will usually have a minimum configuration on which the

software will run reliably. This will usually specify:

 What type of computer: Pentium, Macintosh

 The amount of hard disk space required for the program

 The amount of RAM required for the program to run

 The OS under which the software will run: Windows XP+, OS X 10.5

POSSIBLE ADDITIONAL HARDWARE

As programs become more complex, they require greater hardware requirements. This

could come in the form of needing more RAM or a discrete graphics card. Some programs

may also require other IO devices such as a barcode scanner or Bluetooth connectivity.

APPROPRIATE DRIVERS OR EXTENSIONS

Extensions and drivers are software programs that enable common tasks to be accessed

from many programs. Drivers and extensions act as a interface between software (ie: the OS)

and the IO device being accessed. For example, a driver that allows programs to output to a

printer would convert the output signals into a format that is understood by the printer. It is

sometimes necessary to install additional drivers as the OS only comes with a limited number.

E M E R G I N G T E C H N O L O G I E S

Hardware

Computer hardware is constantly improving and new hardware devices are being developed

that allows users to operate in completely different ways. Processor speed, storage and

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 40 -

communication speeds have increased dramatically and new markets are constantly being

created particularly with the advent of internet-enabled mobile devices such as the iPhone

and the movement to the cloud. Furthermore, Moore’s law states that computer power will

double every 18 months and costs for such technology is dropping rapidly as we refine

manufacturing techniques.

Software

Wirth’s law states that software gets slower faster than hardware gets faster. As we

continue to improve computer hardware, applications continue to be developed that require

every increasing processing speeds. Compare the CLI programs of 10-15 years ago with

today’s modern 3D games and photo/video manipulation programs. Current hardware

limitations will restrict the type of software that can be developed. There has also been an

emerging trend in mobile operating systems with the iPhone and iOS revolutionising the

smart phone market as well as the emergence of Android that provides users with an

experience ever close to that of a desktop computer (multi-tasking, video conferencing,

games, email, word processing etc).

Their Effect On:

HUMAN ENVIRONMENT

Internet-enabled mobile devices allow for greater access and portability to information

however with GPS becoming standard in phones and services such as social networking

broadcasting your location to your social network, it raises concerns over privacy with

people being able to effectively track your location through social networking. Geolocation

could also allow advertisers to target you such as sending you a text message if you are close

to a restaurant.

DEVELOPMENT PROCESS

With the emergence of new technologies, the types of programs being developed will

change. Devices such as the iPad blur the line between mobile, desktop and laptop. They

provide users with an experience that is as close to a computer as a mobile device ever has

done before. With the Smartphone becoming more and more accessible to the common

user, developers have a whole new market than they previously had before when a

Smartphone was targeted as a business user.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 41 -

TESTING AND EVALUATION OF SOFTWARE SOLUTIONS

T E S T I N G T H E S O F T W A R E S O L U T I O N

Comparison of the Solution with the Original Design Specifications

It is no use if the program runs but does not meet the original design specifications for which

it is meant to solve! Developers must continually ensure that the original specifications are

being met in the product being developed.

Generating Relevant Test Data for Complex Solutions

Test data should be generated during analysis and design stages of the software

development cycle when the algorithms are created to determine IPO and ensure the

correctness of an algorithm or program.

Levels of Testing

Test data must be sufficient to ensure the program is completely operational and free from

logic errors. To do so, a set of test data must test:

All parts of a program: Test data must test every part of a program, including the mainline of

the program and any modules used by the program.

Each path of execution: Must test every logical pathway in the algorithm. Data must be

chosen which will execute every possible alternative in a selection control structure. Should

also test the termination and correct exit of repetition control structures.

Boundary conditions: Boundary conditions are the values of variables or expressions that

determine the choice of available options to be taken. Values between boundary conditions

are called middle values.

UNIT OR MODULE

It is possible to develop computer programs that can be easily tested. In structured

programming, each module performs a simple task. Subprograms can be tested as a black

box where only the inputs and outputs are checked and the processes ignored or they can

be tested as a white box where the algorithm of the subprogram is understood and each

path of execution tested appropriately.

A driver program may be developed to test modules in a program, this substitutes for the

main program calling the subprogram and supplying the necessary values for any variables.

PROGRAM

To completely test a program, it is a minimum requirement that the test data tests each

logical pathway and program branch that can be entered. This may not always be feasible

and in such cases test data should be selected which tests scenarios of expected and

possible system use.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 42 -

Once all modules have been tested, it is necessary to ensure that they interface with each

other correctly and that the main program from which the modules are called functions as

expected. All user interfaces should be tested during program testing.

SYSTEM

During system testing, the program is tested in a variety of operating environments. The

effect of hardware, operating systems and other software may create errors that have not

been previously detected. The system testers treat the program as a black box.

The Use of Live Test Data to Test the Complete Solution:

Live data is real data supplied by the client that will be used on the new system. It is only by

using the new system as it is intended to run that bugs will often be detected. Live test data

is used to ensure that a program works under real-life conditions. Live test data will help to

test the performance of the software and hardware under expected loads. Stress testing

involves increasing the load on a program in an attempt to make it fail.

LARGER FILE SIZES

A program developed to access files should be tested with a range of file types and files of

varying sizes – a large file may create errors due to the method of storage for example.

MIX OF TRANSACTION TYPES

A program may process data correctly when it is entered in a consistent and logical way. In a

live situation, data may not be processed in the sequence expected by the software

developer. A different variety of different transaction types and sequences of data entry

should be tested with live data.

RESPONSE TIMES

Live data is used to ensure that the system response times are appropriate. Increasing the

frequency at which test data is processed may create problems that were otherwise hidden.

Software developed on the most modern computer may respond very quickly to commands

from the user however, in real life, it may be slowed down by older computers and slower

networks.

VOLUME DATA

It is important to test a system using expected loads however it is also important to test the

system under heavy loads as, over time, the loads on the system may increase.

INTERFACES BETWEEN MODULES

The interface of a module must be tested to ensure that data is correctly transferred to the

module and also that data and control is transferred correctly back to the part of the

program from which the module was called. Interface tests will ensure that the correct

numbers of parameters are sent to and from the module and that the format is correct.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 43 -

COMPARISON WITH PROGRAM TEST DATA

Live data is extremely helpful in detecting errors that will be frequently encountered in a

program. The use of live test data also tests how the system responds to the procedures

carried out by the users of the program.

Benchmarking

A benchmark is a standard against which performance of a computer program can be

assessed. This standard may be a set of performance criteria that should be met by the

program. Benchmarking can be used to determine the “real” improvements when

upgrading a system.

Quality Assurance

Quality assurance is a set of procedures used to certify that a generated product meets

specified criteria with respect to quality and reliability. Quality control involves periodically

performing inspections, reviews and tests on the system being developed. Regression

testing is the process of re-testing a program to ensure that the changes made have not

affected a previously working part of the program.

After a programmer has tested the program, end users may perform alpha testing in a

controlled environment to see if the requirements are met. Following this, beta testing may

be performed at the client’s own site under normal working conditions. Once a program

passes beta testing it is ready for acceptance by the client.

R E P O R T I N G O N T H E T E S T I N G P R O C E S S

A test specification or test plan is often created to describe the methods that will be used to

test the program. Software testers can follow the stages outline to ensure that all aspects of

the program have been tested. During the testing process, documentation should be

created the software developer and others testing the program to describe the tests

performed and errors corrected.

Documentation of the Test Data and Output Produced

Test data should be used for a purpose. It is of limited use if test data is randomly selected. A

test data table should be created to show the test data to be used and the reason why this

item of test data was selected. A desk-check table is used to document the test data used

and compare the expected output with the actual output of the algorithm or program.

USE OF CASE TOOLS

Computer aided software engineering tools provide a number of helpful tools to test a

computer program as well as tools which simplify the documentation process. Computer

aided prototyping tools allow software developers to simulate software performance under

real-life situations. Documentation of the testing process is simplified through the use of test

management tools.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 44 -

Communication with Those for Whom the Solution Has Been Developed, Including:

The testing process should never be carried out in isolation. The software developer often

approaches testing with the aim of demonstrating how well the program works. This is why

it is important to have other people involved in the testing process. It is essential that the

end user is provided with the opportunity to evaluate the solution that has been developed.

TEST RESULTS

Results of the testing process should be summaries for the user. This empowers the user

and provides an opportunity for them to evaluate and discuss the function of the new

system.

COMPARISON WITH THE ORIGINAL DESIGN SPECIFICATIONS

After testing, users are given an opportunity to use the program and test that it meets the

initial requirements of the problem. After a customer has approved a program, it can be

released to the market.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 45 -

MAINTENANCE OF SOFTWARE SOLUTIONS

M O D I F I C A T I O N O F C O D E T O M E E T C H A N G E D R E Q U I R E M E N T S

Software maintenance involves making changes to meet change requirements or correct

problems in the software solution. Is it important to create documentation to enable others

to understand the structure of the program and the commands that are executed.

Modification involves: problem definition, planning the solution, building the solution,

checking the solution and modifying the solution.

Identification of the Reasons for Change in Code, Macros and Scripts

Maintenance may be carried out because of an error being detected, changes in the

program’s operating environment or because of increased functionality required by the user.

Location of Section to Be Altered

After an error has been detected or it is determined that a change is to be made, the

programmer must determine which section of the source code must be altered to allow for

the change. Well structured code and extensive documentation simplifies the process of

isolating and correcting errors.

Determining Changes to Be Made

Once the section of code requiring change has been located, the programmer must decide

how to change the program in a way that will not create new problems. One technique is

known as the software patch. This is a small piece of code that is added to the compiled

program that avoids the error in some way. Once all errors have been detected, a new

version of the program will be released.

Over time, small patches can make a program quite inefficient and slow. Software re-

engineering is the process of using modern technology to rebuild or redesign an out of date

program.

Implementing and Testing Solution

Modifications made to an existing program must be tested to ensure that the changes are

not going to negatively affect other areas of the program. Regression testing is the process

of re-testing a program to ensure that the changes made have not affected a previously

working part of the program.

D O C U M E N T A T I O N O F C H A N G E S

Documentation should be created during every stage of the program development cycle.

Source Code, Macro and Script Documentation
Modification of Associated Hard Copy Documentation and Online Help
Use of Case Tools to Monitor Changes and Versions

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 46 -

DEVELOPING A SOLUTION PACKAGE

D E S I G N I N G A N D D E V E L O P I N G A S O F T W A R E S O L U T I O N T O A C O M P L E X P R O B L E M

D E F I N I N G T H E P R O B L E M A N D I T S S O L U T I O N , I N C L U D I N G :

Defining the Problem

IDENTIFICATION OF THE PROBLEM
IDEA GENERATION
COMMUNICATION WITH OTHERS INVOLVED IN THE PROPOSED SYSTEM

Understanding

INTERFACE DESIGN
COMMUNICATION WITH OTHERS INVOLVED IN THE PROPOSED SYSTEM
REPRESENTING THE SYSTEM USING DIAGRAMS
SELECTION OF APPROPRIATE DATA STRUCTURES
APPLYING PROJECT MANAGEMENT TECHNIQUES
CONSIDERATION OF ALL SOCIAL AND ETHICAL ISSUES

Planning and Design

INTERFACE DESIGN
SELECTION OF SOFTWARE ENVIRONMENT
IDENTIFICATION OF APPROPRIATE HARDWARE
SELECTION OF APPROPRIATE DATA STRUCTURES
PRODUCTION OF DATA DICTIONARY
DEFINITION OF REQUIRED VALIDATION PROCESSES
DEFINITION OF FILES — RECORD LAYOUT AND CREATION
ALGORITHM DESIGN
INCLUSION OF STANDARD OR COMMON ROUTINES
USE OF SOFTWARE TO DOCUMENT DESIGN
IDENTIFICATION OF APPROPRIATE TEST DATA
ENABLING AND INCORPORATING FEEDBACK FROM USERS AT REGULAR INTERVALS
CONSIDERATION OF ALL SOCIAL AND ETHICAL ISSUES
APPLYING PROJECT MANAGEMENT TECHNIQUES

S Y S T E M S I M P L E M E N T A T I O N

Implementation

PRODUCTION AND MAINTENANCE OF DATA DICTIONARY
INCLUSION OF STANDARD OR COMMON ROUTINES
USE OF SOFTWARE TO DOCUMENT DESIGN
TRANSLATING THE SOLUTION INTO CODE
CREATING ONLINE HELP
PROGRAM TESTING
REPORTING ON THE STATUS OF THE SYSTEM AT REGULAR INTERVALS
APPLYING PROJECT MANAGEMENT TECHNIQUES

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 47 -

ENABLING AND INCORPORATING FEEDBACK FROM USERS AT REGULAR INTERVALS
COMPLETING ALL USER DOCUMENTATION FOR THE PROJECT
CONSIDERATION OF ALL SOCIAL AND ETHICAL ISSUES
COMPLETING FULL PROGRAM AND SYSTEMS TESTING

Maintenance

MODIFYING THE PROJECT TO ENSURE AN IMPROVED SOLUTION

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 48 -

THE SOFTWARE DEVELOPER’S VIEW OF THE HARDWARE

R E P R E S E N T A T I O N O F D A T A W I T H I N T H E C O M P U T E R

A computer can only process binary data (0 or 1). Humans work in decimal numbers and

hence we need to convert decimal to binary and vice versa. There are limitations on

representation of data which the programmer needs to determine.

 The range of acceptable integers (16, 32 or 64 bits)

 Maximum size of a real number and how many decimal places that can be used.

 The disk space that can be used

 The amount of Ram available for data storage.

Character Representation, Namely:

Characters are letters, digits or other symbols from the keyboard. They have to be changed

into binary numbers to be stored and processed by the computer. Characters can be

grouped together to form strings to allow for easier manipulation and storage (ie: and array

of individual characters)

ASCII

ASCII: American Standard Code for information Interchange.

Allows data to be stored in binary form using7 buts to encode 2^7 (128) different characters.

Or EBCDIC which uses 8-biuts can be encoded.

HEXADECIMAL

Hexadecimal numbers are base 16 (0-9, A-F). One hexadecimal digit can be used to represent

4 binary digits. One byte (8-bits) can be written using two hexadecimal numbers. You can

break a byte in half (nibble) and convert these halves into hexadecimal.

Integer Representation, Including:

Integers are positive or negative whole numbers. They are usually stored as 32-bits.

SIGN AND MODULUS

Sign and modulus: this method uses the left-most bit to represent the sign (0=+, 1=-). The

remaining bits give the modulus or magnitude of the number.

ONE’S COMPLEMENT

One’s complement: depicts negative numbers by replacing all the ones in the positive form

with zeros and all the zeros with ones

TWO’S COMPLEMENT

Two’s complement: represents a negative number by adding 1 to the one’s complement of

the number.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 49 -

Representation of Fractions, Namely:

Binary fractions are represented as negative powers of 2 such as 2^-1=1/2 etc. The decimal

number 0.3125 can be converted to binary by repeatedly multiplying by 2 and removing the

digit to the left of the decimal place and then reading off the whole numbers.

FLOATING POINT OR REAL

Real numbers are presented as floating point numbers made up of a sign bit, mantissa and

exponent. They are usually stored as 32-bits. Real numbers allow for a greater range of

numbers to be represented however the accuracy of large numbers may not be sufficient

because there is a limited number of decimal places. Double precision reals (using 64-bits)

are often used to represent numbers more accurately.

Problems of inaccuracy can occur when using real data types. Some numbers cannot be

accurately represented as exact binary fractions which can lead to truncation where the

number of cut off at a certain number of decimal places without rounding it up or down. This

can cause errors in high precision calculations.

BOOLEAN DATA

Boolean data only has two values – either true or false. Data can be stored as only one bit

and it is the simplest data type.

Binary Arithmetic, Including:

ADDITION

Addition is the basis of all arithmetic operations inside the computer and is carried out by the

special ALU. The rules are simple:

SUBTRACTION USING TWO’S COMPLEMENT REPRESENTATION

Rules:

Subtraction is too hard for computers to perform so instead they “add negatives”.

Essentially they add the first number to the two’s complement of the second number

MULTIPLICATION, SHIFT AND ADD

The multiplication of two binary numbers is performed using addition. Each successive bit of

the multiplier is looked at. If it is a 1, then the multiplicand is written down. If it is a 0 then all

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 50 -

zeros are written down. The numbers in successive lines are shifted one place to the left of

the previous number and then they are all added together.

DIVISION, SHIFT AND SUBTRACT

Division of binary numbers can be carried out using long division. This process involves:

 Subtracting the divisor

 Shifting the next digit into the remainder until the divider can be subtracted again.

 Repeat above

E L E C T R O N I C C I R C U I T S T O P E R F O R M S T A N D A R D S O F T W A R E O P E R A T I O N S

Computers perform operations on binary data. In a computer, a 0 represents off and a 1

represents on.

Logic Gates, Including:

Logic gates are hardware circuits that produce a 1 or a 0 output signal if the input

requirements are satisfied. Logic gates are usually implemented in the computer using ICs.

THE AND FUNCTION

Involves two input variables to produce one output. If both input variables are 1, then the

output will be 1 otherwise the output will be 0.

THE OR FUNCTION

Involves two input variables to produce one output. If either or both of the input variables

are 1, then the output will be 1.

THE NOT FUNCTION

Involves a single input and output. The state of the output is opposite the state of the input.

THE NAND (NOT AND) FUNCTION

Is the inverse of the AND function ie: the output is 1 expect if both inputs are 1.

THE NOR (NOT OR) FUNCTION

Is the inverse of the OR function ie: the output will be 1 if both of the inputs are 0

THE XOR (EXCLUSIVE OR) FUNCTION

Will output a 1 if either of the inputs are 1 but NOT both.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 51 -

Truth Tables

Circuit Design Steps

IDENTIFY INPUTS AND OUTPUTS

The number of inputs into the circuit must be determined, as well as the number of output.

IDENTIFY REQUIRED COMPONENTS

The circuit designer must then determine which logic gates will be needed.

CHECK SOLUTION WITH A TRUTH TABLE

Name Description Logic Gate Truth Table

AND The output value of C
is 1 when both input
values A and B are 1

Input Output

A B C=A+B

0
0
1
1

0
1
0
1

0
0
0
1

OR If either of the input
values are 1 then the
output will be 1.

Input Output

A B C=A+B

0
0
1
1

0
1
0
1

0
1
1
1

NOT The state of the
output is the inverse
of the input

Input Output

A C=A

0
1

1
0

NAND Not AND. The output
value C is 1 except
where both A and B
are 1

Input Output

A B C=(AB)

0
0
1
1

0
1
0
1

1
1
1
0

NOR The output C is 1
when both inputs A
and B are 0

Input Output

A B C=A+B

0
0
1
1

0
1
0
1

1
0
0
0

XOR The output C is 1
except when both
inputs A and B are
the same

Input Output

A B C=A+B

0
0
1
1

0
1
0
1

0
1
1
0

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 52 -

Once a possible solution has been developed, it must be tested to ensure it works as

required.

EVALUATE THE CIRCUIT DESIGN

Specialty Circuits, Including:

All circuits within the computer are made from a combination of the basic logic gates.

Circuits can be designed to perform addition, subtraction and comparisons. Combination

circuits produce instant results as determined by a combination of logic gates. Sequential

circuits contain memory cells as well as logic gates.

HALF ADDER

A Half adder is a combinational circuit that performs the addition of two bits.

Input Output

X Y Carry Sum

0
0
1
1

0
1
0
1

0
0
0
1

0
1
1
0

The half adder is made by combining the AND and XOR gates

FULL ADDER

A full adder is a combinational circuit that can be used to add three binary digits. It consists

of three inputs and two outputs.

Input Output

X Y Z Carry Sum

0
0
0
0
1
1
1
1

0
1
1
1
0
0
1
1

0
0
0
1
0
1
0
1

0
0
0
1
0
1
1
1

0
1
1
0
1
0
0
1

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 53 -

A full adder can be implemented by combining two half adders.

FLIP-FLOPS AS A MEMORY STORE

A flip-flop is a circuit that can store a binary value as long as power is supplied to the circuit.

A flip-flop can store the binary values 1 and 0. When a value has been set, the flip-flop

remains in this state until it is told to change states.

A flip-flop has two outputs, A and NOT Q, and two inputs, set (S) and reset (R).

If the set input is 1 and the reset input is 0, gate 2 (bottom) will have an output of 1. But if

either of the NOR inputs are 1, then the output has to be 0 regardless of the other input.

P R O G R A M M I N G O F H A R D W A R E D E V I C E S

For a computer to be able to communicate with other computers or with input and output

devices, the data transmissions must be structured. The way that the data is structured

varies with different communications protocols (a set of rules that governs the transmission

of data between computers).

The Input Data Stream from Sensor and Other Devices

Data read into the computer is accessed as a sequence of zeros and ones. The computer

must be programmed to interpret these bits of data to produce useful information. A

protocol must be established before two hardware devices can exchange data. The protocol

used will determine the rules for structuring data packets.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 54 -

HEADER INFORMATION

The header contains a set sequence of bits to indicate the start of a block of data. The

header may also specify how much data is to be transmitted. Headers often contain error-

checking data such as parity bits or cyclic redundancy check characters.

DATA CHARACTERS

The body of data will contain the instructions that are to be processed by the CPU.

TRAILER INFORMATION

The trailer contains data bits to indicate the end of a block of data. The use of a trailer and a

header help the CPU to manage the data that it receives. Data for error checking may be included

in the trailer (CRC, hash etc)

CONTROL CHARACTERS

Control characters permit the checking and correct reassembling of a message. A packet

contains control characters to enable correct interpretation of the packet.

HARDWARE SPECIFICATIONS

The input data stream will be structured according to the standards or protocol followed by

the hardware developer. Driver or extension software such as DLL’s may be required to

enable an operating system to communicate with a particular hardware device.

DOCUMENTATION

Technical documentation accompanying hardware should specify the communication

protocols used for that device and the format of data, at the very least; the documentation

should contain a description of the protocol used.

Processing Of Data Stream

THE NEED TO RECOGNISE AND STRIP CONTROL CHARACTERS

The protocol used for data transfer will determine how control characters are recognised

and stripped from the body of data.

COUNTING THE DATA CHARACTERS

Header fields may contain information concerning how much data is being transmitted.

EXTRACTING THE DATA

The hardware device connected to the CPU is responsible for extracting and using data sent

to it from the computer.

Generating Output to an Appropriate Output Device

The output data stream functions similarly to the input data stream. The CPU sends

information to connected devices. Output includes acknowledging that data has been

received successfully and data packets to print information or control peripheral devices etc.

HSC 2010 Software Design and Development

Summary Notes

D:\Documents\School\School Work\SDD\Software Summary Notes.docx - 55 -

Output data packets must specify the device to which the information is being transmitted.

REQUIRED HEADER INFORMATION

REQUIRED CONTROL CHARACTERS

DATA

REQUIRED TRAILER INFORMATION

Control Systems

A computer-controlled system is a combination of hardware and software designed to

instruct that computer to control a connected device.

Sensors (input): Sensors are used to capture information from the environment. They are a

form of transducer as they convert one form of energy into another.

Instructions (input as well): Instructions control the actuators and effects and allow the

controller to interpret the input from the sensors in an appropriate way.

Process Controller (processing): may be a computer or a specially designed circuit built into

an appliance to allow stand-alone applications.

Effectors and actuators (output): perform the actions of modifying the environment such as

motors, relays etc.

RESPONDING TO SENSOR INFORMATION

Sensors are used to record both analogue and digital data. Analogue signals are

continuously variable with the signals having any value within a particular range. Digital

signals have discrete levels only (0 or 1)

SPECIFYING MOTOR OPERATIONS

Printer Operation

CONTROL CHARACTERS FOR FEATURES, INCLUDING PAGE THROW, FONT CHANGE, LINE
SPACING

Specialist Devices with Digital Input and/or Output

	Development And Impact Of Software Solutions
	Social and ethical issues
	Rights And Responsibilities Of Software Developers
	Authorship
	Reliability
	Quality
	Response to Problems
	Code of Conduct
	Viruses

	Software Piracy And Copyright
	Concepts Associated With Piracy and Copyright, Including:
	Intellectual property
	Plagiarism
	Shareware
	Freeware
	Public domain
	Ownership versus licensing
	Copyright laws
	Reverse/backwards engineering
	Decompilation
	Licence conditions
	Network use

	Various National Perspectives to Software Piracy and Copyright Laws
	The Relationship between Copyright Laws and Software License Agreements

	The Software Market
	Maintaining Market Position
	The Effect on the Marketplace

	Significant Social And Ethical Issues
	National and International Legal Action Resulting From Software Development
	Public Issues, Including:
	the y2K problem
	computer viruses
	reliance on software

	Application of Software Development Approaches
	Software Development Approaches
	Approaches Used In Commercial Systems, Including:
	The Structured Approach
	Prototyping
	Rapid Applications Development
	End User Development
	Combinations of Any of The Above

	Methods of Implementation
	Direct Cut Over
	Parallel
	Phased
	PIlot

	Current Trends in Software Development, For Example:
	Outsourcing
	Popular Approaches
	Popular Languages
	Employment Trends
	Networked Software
	Customised Off-The-Shelf Packages

	Use of Case Tools and Their Application in Large Systems Development
	Software Versions
	Data Dictionary
	Test Data
	Production of Documentation

	Software Development Cycle
	Defining and understanding the problem
	Defining the problem
	Identifying the Problem
	Needs
	Objectives
	Boundaries

	Determining the Feasibility of the Solution
	Is It Worth Solving?
	Technical
	Economic/Budgetary
	Scheduling
	Operational
	Legal
	SOcial/Ethical COnsiderations
	Possible Alternatives

	Design Specifications
	The Developer’s Perspective in Consideration Of:
	Data Types
	Algorithms
	Variables

	The User’s Perspective

	Modelling
	Representing a System Using Diagrams, Including:
	Input Process Output (IPO) Diagrams
	Story Boards
	Context Diagrams
	Data Flow Diagrams
	Systems Flowcharts
	Screen Designs
	Consideration Of Use Of A Limited Prototype

	Communication Issues, Including:
	The Need to Empower the User
	The Need to Acknowledge the User’s Perspective
	Enabling and Accepting Feedback

	Planning and design of software solutions
	Standard Algorithms For Searching And Sorting
	Standard Logic Used In Software Solutions, Namely:
	Finding Maximum And Minimum Values In Arrays
	Processing Strings (Extracting, Inserting, Deleting)
	File Processing, Including Sentinel Value
	Linear Search
	Binary Search
	Bubble Sort
	Insertion Sort
	Selection Sort

	Custom-Designed Logic Used In Software Solutions
	Requirements To Generate These Include:
	Identification Of Inputs, Processes And Outputs
	Representation As An Algorithm
	Definition Of Required Data Structures
	Use Of Data Structures, Including Multi-Dimensional Arrays, Arrays Of Records, Files (Sequential And Relative/Random)
	Use Of Random Numbers
	Thorough Testing

	Standard Modules (Library Routines) Used In Software Solutions
	Requirements For Generating Or Subsequent Use Include:
	Identification Of Appropriate Modules
	Consideration Of Local And Global Variables
	Appropriate Use Of Parameters (Arguments)
	Appropriate Testing Using Drivers
	Thorough Documentation

	Customisation of existing software solutions
	Identification of Relevant Products
	Customisation
	Cost Effectiveness

	Documentation Of The Overall Software Solution
	Tools For Representing A Complex Software Solution Include:
	Algorithm Descriptions
	System Flowcharts
	Structure Diagrams
	Data Flow Diagrams
	Data Dictionary

	Selection Of Language To Be Used
	Event-Driven Software
	Driven By The User
	Program Logic

	Sequential Approach
	Defined By The Programmer

	Relevant Language Features
	Hardware Ramifications
	Graphical User Interface (GUI)

	Implementation of software solution
	Interface Design In Software Solutions
	The Design of Individual Screens, Including:
	Identification Of Data Required
	Current Popular Approaches
	Design Of Help Screens
	Audience Identification
	Consistency In Approach

	Language Syntax Required For Software Solutions
	Use of BNF, EBNF and Railroad Diagrams to Describe the Syntax of New Statements in the Chosen Language
	Commands Incorporating the Definition and Use Of:
	Multi-Dimensional Arrays
	Arrays Of Records
	Files (Sequential And Relative/Random)
	Random Number Generators

	The Role Of The CPU In The Operation Of Software
	Machine Code and CPU Operation
	Instruction Format
	Use Of Registers And Accumulators
	Use Of Program Counter And Fetch-Execute Cycle
	Addresses Of Called Routines
	Linking, Including Use Of DLL’s

	Translation Methods In Software Solutions
	Different Methods Include:
	Compilation
	Incremental Compilation
	Interpretation

	The Translation Process
	Advantages and Disadvantages of Each Method

	Program Development Techniques In Software Solutions
	Structured Approach to a Complex Solution, Including:
	One Logical Task Per Subroutine
	Stubs
	Flags
	Isolation Of Errors
	Debugging Output Statements
	Elegance Of Solution
	Writing For Subsequent Maintenance

	The Process of Detecting and Correcting Errors, Including:
	Syntax Errors
	Logic Errors
	Peer Checking
	Desk Checking
	Use Of Expected Output
	Run Time Errors, Including:
	Arithmetic Overflow
	Division By Zero
	Accessing Inappropriate Memory Locations

	The Use of Software Debugging Tools, Including:
	Use Of Breakpoints
	Resetting Variable Contents
	Program Traces
	Single Line Stepping

	Documentation Of A Software Solution
	Forms of Documentation, Including:
	Process Diary
	User Documentation
	Self-Documentation Of The Code
	Technical Documentation, Including Source Code, Algorithms, Data Dictionary And Systems Documentation
	Documentation For Subsequent Maintenance Of The Code

	Use of Application Software to Assist In the Documentation Process
	Use Of CASE Tools

	Hardware Environment To Enable Implementation Of The Software Solution
	Hardware Requirements
	Minimum Configuration
	Possible Additional Hardware
	Appropriate Drivers Or Extensions

	Emerging Technologies
	Hardware
	Software
	Their Effect On:
	Human Environment
	Development Process

	Testing and evaluation of software solutions
	Testing The Software Solution
	Comparison of the Solution with the Original Design Specifications
	Generating Relevant Test Data for Complex Solutions
	Levels of Testing
	Unit Or Module
	Program
	System

	The Use of Live Test Data to Test the Complete Solution:
	Larger File Sizes
	Mix Of Transaction Types
	Response Times
	Volume Data
	Interfaces Between Modules
	Comparison With Program Test Data

	Benchmarking
	Quality Assurance

	Reporting On The Testing Process
	Documentation of the Test Data and Output Produced
	Use Of CASE Tools

	Communication with Those for Whom the Solution Has Been Developed, Including:
	Test Results
	Comparison With The Original Design Specifications

	Maintenance of software solutions
	Modification of code to meet changed requirements
	Identification of the Reasons for Change in Code, Macros and Scripts
	Location of Section to Be Altered
	Determining Changes to Be Made
	Implementing and Testing Solution

	Documentation Of Changes
	Source Code, Macro and Script Documentation
	Modification of Associated Hard Copy Documentation and Online Help
	Use of Case Tools to Monitor Changes and Versions

	Developing a Solution Package
	Designing and developing a software solution to a complex problem
	Defining the problem and its solution, including:
	Defining the Problem
	Identification Of The Problem
	Idea Generation
	Communication With Others Involved In The Proposed System

	Understanding
	Interface Design
	Communication With Others Involved In The Proposed System
	Representing The System Using Diagrams
	Selection Of Appropriate Data Structures
	Applying Project Management Techniques
	Consideration Of All Social And Ethical Issues

	Planning and Design
	Interface Design
	Selection Of Software Environment
	Identification Of Appropriate Hardware
	Selection Of Appropriate Data Structures
	Production Of Data Dictionary
	Definition Of Required Validation Processes
	Definition Of Files — Record Layout And Creation
	Algorithm Design
	Inclusion Of Standard Or Common Routines
	Use Of Software To Document Design
	Identification Of Appropriate Test Data
	Enabling And Incorporating Feedback From Users At Regular Intervals
	Consideration Of All Social And Ethical Issues
	Applying Project Management Techniques

	Systems implementation
	Implementation
	Production And Maintenance Of Data Dictionary
	Inclusion Of Standard Or Common Routines
	Use Of Software To Document Design
	Translating The Solution Into Code
	Creating Online Help
	Program Testing
	Reporting On The Status Of The System At Regular Intervals
	Applying Project Management Techniques
	Enabling And Incorporating Feedback From Users At Regular Intervals
	Completing All User Documentation For The Project
	Consideration Of All Social And Ethical Issues
	Completing Full Program And Systems Testing

	Maintenance
	Modifying The Project To Ensure An Improved Solution

	The Software Developer’s View of the Hardware
	Representation Of Data Within The Computer
	Character Representation, Namely:
	ASCII
	Hexadecimal

	Integer Representation, Including:
	Sign And Modulus
	One’s Complement
	Two’s Complement

	Representation of Fractions, Namely:
	Floating Point Or Real
	Boolean Data

	Binary Arithmetic, Including:
	Addition
	Subtraction Using Two’s Complement Representation
	Multiplication, Shift And Add
	Division, Shift And Subtract

	Electronic Circuits To Perform Standard Software Operations
	Logic Gates, Including:
	The AND Function
	The OR Function
	The NOT Function
	The NAND (NOT AND) Function
	The NOR (NOT OR) Function
	The XOR (EXCLUSIVE OR) Function

	Truth Tables
	Circuit Design Steps
	Identify Inputs And Outputs
	Identify Required Components
	Check Solution With A Truth Table
	Evaluate The Circuit Design

	Specialty Circuits, Including:
	Half Adder
	Full Adder
	Flip-Flops As A Memory Store

	Programming Of Hardware Devices
	The Input Data Stream from Sensor and Other Devices
	Header Information
	Data Characters
	Trailer Information
	Control Characters
	Hardware Specifications
	Documentation

	Processing Of Data Stream
	The Need To Recognise And Strip Control Characters
	Counting The Data Characters
	Extracting The Data

	Generating Output to an Appropriate Output Device
	Required Header Information
	Required Control Characters
	Data
	Required Trailer Information

	Control Systems
	Responding To Sensor Information
	Specifying Motor Operations

	Printer Operation
	Control Characters For Features, Including Page Throw, Font Change, Line Spacing

	Specialist Devices with Digital Input and/or Output

